
Self-Adjusting Computation with Delta ML

Umut A. Acar1 and Ruy Ley-Wild2

1 Toyota Technological Institute
Chicago, IL, USA
umut@tti-c.org

2 Carnegie Mellon University
Pittsburgh, PA, USA
rleywild@cs.cmu.edu

Abstract. In self-adjusting computation, programs respond automati-
cally and efficiently to modifications to their data by tracking the dy-
namic data dependences of the computation and incrementally updating
the output as needed. In this tutorial, we describe the self-adjusting-
computation model and present the language ∆ML (Delta ML) for writ-
ing self-adjusting programs.

1 Introduction

Since the early years of computer science, researchers realized that many uses of
computer applications are incremental by nature. We start an application with
some initial input to obtain some initial output. We then observe the output,
make some small modifications to the input and re-compute the output. We
often repeat this process of modifying the input incrementally and re-computing
the output. In many applications, incremental modifications to the input cause
only incremental modifications to the output, raising the question of whether it
would be possible to update the output faster than recomputing from scratch.

Examples of this phenomena abound. For example, applications that interact
with or model the physical world (e.g., robots, traffic control systems, schedul-
ing systems) observe the world evolve slowly over time and must respond to
those changes efficiently. Similarly in applications that interact with the user,
application-data changes incrementally over time as a result of user commands.
For example, in software development, the compiler is invoked repeatedly after
the user makes small changes to the program code. Other example application
areas include databases, scientific computing (e.g., physical simulations), graph-
ics, etc.

In many of the aforementioned examples, modifications to the computation
data or input are external (e.g., the user modifies some data). In others, incre-
mental modifications are inherent. For example, in motion simulation, objects
move continuously over time causing the property being computed to change
continuously as well. In particular, if we wish to simulate the flow of a fluid by
modeling its constituent particles, then we need to compute certain properties
of moving objects, e.g., we may want to triangulate the particles to compute the

2

forces exerted between particles, and update those properties as the points move.
Since the combinatorial structure of the computed properties change slowly over
time, we can often view continuous motion as an incremental modification; this
makes it possible to compute the output more efficiently than re-computing it
from-scratch at fixed intervals.

Although incremental applications abound, no effective general-purpose tech-
nique or language was known for developing incremental applications until re-
cently (see Section 10 for the discussion of the earlier work on the subject). Many
problems required designing specific techniques or data structures for remem-
bering and re-using results to ensure that computed properties may be updated
efficiently under incremental modifications to data. Recent advances on self-
adjusting computation (Section 10.2) offer an alternative by proposing general-
purpose techniques for automatically adapting computations to data modifica-
tions by selectively re-executing the parts of the computation that depend on
the modifications and re-using unaffected parts. Applications of the technique
to problems from a reasonably diverse set of areas show that the approach can
be effective both in theory and practice.

We present a tutorial on a language for self-adjusting computation, called
∆ML (Delta ML), that extends the Standard ML (SML) language with primi-
tives for self-adjusting computation.

In self-adjusting computation, programs consist of two components: a self-
adjusting core and a top- or meta-level mutator. The self-adjusting core is a
purely functional program that performs a single run of the intended applica-
tion. The mutator drives the self-adjusting core by supplying the initial input
and by subsequently modifying data based on the application. The mutator can
modify the computation data in a variety of forms depending on the application.
For example, in a physical simulation, the mutator can insert a new object into
the set of objects being considered. In motion simulation, the mutator changes
the outcomes of comparisons performed between objects as the relationship be-
tween objects change because of motion. After modifying computation data,
the mutator can update the output and the computation by requesting change
propagation to be performed. Change propagation is at the core of self-adjusting
computation: it an automatic mechanism for propagating the data modifications
through the computation to update the output.

To support efficient change propagation, we represent a computation with a
trace that records the data and control dependences in the computation. Change
propagation uses the trace to identify and re-execute the parts of the compu-
tation that depend on the modified data while re-using the parts unaffected
by the changes. The structure and the representation of the trace is critical to
the effectiveness of the change propagation. Techniques have been developed for
implementing both tracing and change propagation efficiently (Section 10.2).

The ∆ML language provides linguistic facilities for writing self-adjusting pro-
grams consisting of a core and a mutator. To this end, the language distinguishes
between two kinds of function spaces: conventional and self-adjusting. The mu-
tator consists solely of conventional functions. The self-adjusting core consists

3

of self-adjusting functions and all pure (self-adjusting or conventional) functions
that they call directly or indirectly (transitively).

∆ML enables the programmer to mark the computation data that is expected
to change across runs (or over time) by placing them into modifiable references
or modifiables for short. For implementing a self-adjusting core, ∆ML provides
facilities for creating and reading modifiables within a self-adjusting function. In
this tutorial, we do not include the update operation on modifiables in the core—
modifiables are write-once within the self-adjusting core. 3 ∆ML also provides
facilities for defining self-adjusting functions to be memoized if so desired. For
implementing a mutator, ∆ML provides meta-level facilities to create, read, and
update modifiables, and to perform change propagation. The mutator can use the
update operation to modify destructively the contents of modifiables—this is how
mutators modify the inputs of the self-adjusting core. After such modifications
are performed, the mutator can use change propagation to update the result of
the core.

Writing a self-adjusting program is very similar to writing a conventional,
purely functional program. Using the techniques described in this tutorial, it
is not hard to take an existing purely functional SML program and make it
self-adjusting by annotating the code with ∆ML primitives. Annotated code is
guaranteed to respond to modifications to its data correctly: the result of an
updated run is equivalent to a (from-scratch) run. Guaranteeing efficient change
propagation, however, may require some additional effort: we sometimes need to
modify the algorithm or use a different algorithm to achieve the optimal update
times.

When an algorithm does not yield to efficient change propagation, it is some-
times possible to change it slightly to regain efficiency, often by eliminating un-
necessary dependences between computation data and control. For example, the
effectiveness of a self-adjusting mergesort algorithm can be improved by employ-
ing a divide-and-conquer strategy that divides the input into two sublists ran-
domly instead of deterministically dividing in the middle. Using randomization
eliminates the dependence between the length of the list and the computation,
making the computation less sensitive to modiciations to the input (e.g. when a
new element is inserted the input length changes, causing the divide-and-conquer
algorithm to create different splits than before the insertion, ultimately prevent-
ing re-use). Sometimes, such small changes to the algorithm do not suffice to
improve its efficiency and we need to consider an entirely different algorithm.
For example, the quicksort algorithm is inherently more sensitive to input mod-
ifications than the mergesort algorithm, because it is sensitive to values of the
pivots, whereas the mergesort algorithm is not. Similarly, an algorithm that
sums a list of numbers by performing a traversal of the list and maintaining
an accumulator will not yield to efficient change propagation, because inserting
an element can change the value of the accumulator at every recursive call. No

3 The actual ∆ML language places no such restrictions on how many time modifiables
can be written in the core.

4

small modification will improve this algorithm as we would like. Considering a
different, random sampling algorithm addresses the problem (Section 8).

The structure of the rest of the tutorial is as follows. In Section 2 we de-
scribe how incremental modifications arise and why they can lead to improved
efficiency and why having general-purpose techniques and languages can help
take advantage of this potential. In Section 3 we describe the self-adjusting com-
putation model and the core and the meta primitives for writing self-adjusting
programs. In Section 4 we describe an example self-adjusting application, called
CIRCLES, and how the user can interact with such a program. In the rest of the
tutorial, we use this example to illustrate how the ∆ML language may be used
to implement self-adjusting programs.

2 Motivation

We consider the two kinds of modifications, discrete and continuous, that arise in
incremental applications via simple examples and describe how we may take ad-
vantage of them to improve efficiency. We then describe how and why language-
based techniques are critical for scalability.

2.1 Discrete and Continuous Modifications

Close inspection of incremental applications reveal that two kinds of modification
arise naturally: discrete/dynamic and continuous/kinetic.

Discrete/Dynamic: A discrete or dynamic modification is a combinatorial
modification to the input of the program that modifies the set of objects
in the input.

Continuous/Kinetic: A continuous or kinetic modification affects the rela-
tionship between the input objects but does not affect the set of objects
itself. By a relationship we broadly mean any function mapping objects into
a discrete set. For example, comparisons between objects are relationships
because the co-domain contains true and false.

As an example, consider sorting a list of numbers and how discrete and
continuous modifications may arise in this application.

Suppose that we sort a list of numbers, e.g., [30,10,20,0], and then we
insert a new number to the list, e.g. [7,30,10,20,0]. Since the set of objects
itself is modified this is a discrete modification. Note that inserting/deleting
an element from the input only causes an in incremental modification to the
output, that of inserting/deleting the new element into/from the output (at the
right position). Thus we can expect to be able to update the output significantly
faster than recomputing from scratch. In fact, we can update the output for a
sorting application in optimal logarithmic time, instead of the O(n log n) time a
re-computation would require.

As an example of continuous modifications, consider a set of numbers that
change as a function of time a(t) = 40.0− 0.3t, b(t) = 20.0− 0.3t, c(t) = 10, and

5

 40

 20

 10

 0

 0 50 100 150 200
P

os
iti

on
s

Time

output change
a(t) = 40.0 - 0.3 t
b(t) = 20.0 - 0.3 t

c(t) = 10.0
d(t) = 0.15 t

Fig. 1. Numbers varying with time.

d = 0.15t. Suppose that we want to keep the numbers sorted as they change over
time. More specifically, we want to start at time zero (t = 0), and then update
the output whenever the ordering changes. Since time changes continuously,
the values of the functions also change continuously. But the sorting changes
discretely—only when the outcomes of comparisons between the moving numbers
change.

For example, at time 0, sorted output is [d(t), c(t), b(t), a(t)], which remains
the same until the time becomes 33.3̇, when b(t) falls below c(t) changing the out-
put to [d(t), b(t), c(t), a(t)]. The output then remains the same until 44.4̇, when
b(t) falls below d(t), and the output becomes [b(t), d(t), c(t), a(t)]. The output
then changes at 66.6̇ to [b(t), c(t), d(t), a(t)], and at 88.8̇ to [b(t), c(t), a(t), d(t)].
The final change takes place at time 100.0, when the output becomes
[b(t), a(t), c(t), d(t)]. Although the output changes continuously, we only need
to update the computation at these times, i.e., when the output changes combi-
natorially.

Note that when the outcome of the comparison changes, the change in the
output is small—it is simply a swap of two adjacent numbers. This property
enables treating motion as a form of incremental modification. In fact, in this
example, we can model continuous modifications as discrete modifications that
affect the outcomes of comparisons. In general, if the computed property only
depends on relationships between data whose values range over a discrete do-
main, then we can perform motion simulation by changing the values of these
relationships as they take different values discretely.

2.2 Taking Advantage of Incrementality

When an incremental modification to computation data causes an incremental
modification to the output, we can expect to update the output faster than by
re-computing from scratch. In this tutorial, we propose language-based general
purpose techniques for taking advantage of incremental modifications to update
outputs faster. An alternative approach would be to design and implement ad

6

hoc data structures, called dynamic data structures, on a per-problem basis. In
this section, we briefly overview the design of several dynamic data structures
for some relatively simple problems and point out some difficulties with the
approach.

As a simple example, consider mapping a list to another list. Here is the
interface for a DynamicMap data structure:
signature DynamicMap =
sig

type (α,β) t
val map: α list -> (α -> β) -> β list * (α,β) t
val insert: α * int * (α,β) t -> β list * (α,β) t

end

The map function performs an “initial map” of the input and generates the
output list as well as a data structure (of abstract type (α,β) t) that can be
used to speed up the subsequent insertions. After map is executed, we can modify
the input by inserting new elements using the insert operation. This operation
takes the new element with the position at which is should be inserted and the
data structure, and returns the updated output list and data structure.

Having designed the interface, let’s consider two possible choices for the aux-
iliary data structure that is used to speed up the insertions.

1. The auxiliary data structure is the input, the map function simply returns the
input. The insert function inserts the element into the list at the specified
position. To update the output we have no choice but to re-execute, which
offers no performance gain.

2. The auxiliary data structure represents the input and the output along with
pointers linking the input elements to the corresponding output elements.
These pointers help in finding the location of the element corresponding to
an input element in the output. The map function constructs and returns
this data structure. The insert function inserts the element in the input
at the specified position, maps the element to an output element, and using
the pointers to the output, finds the position for the output element, and
inserts it. Using this approach, we can insert a new element and update
the output with expected constant time overhead over the time it takes to
map the input element to an output. Note that we can update the input in
(expected) constant time by maintaining a mapping between locations and
the pointers to update.

As our second example, consider a dynamic data structure for sorting with
the following interface.
signature DynamicSort =
sig

type α t
val sort: α list -> (α * α -> bool) -> α list * α t
val insert: (α * int) -> α t -> α list * α t

7

end

The sort operation performs an “initial sort” of the input and generates the
output list as well as the auxiliary data structure (of abstract type α t). After
sort is executed, we can change the input by inserting new elements using the
insert operation. This operation takes the new element with the position at
which it should be inserted and the data structure, and returns the updated
output list and data structure.

As before, there are choices for the auxiliary data structure.

1. The sort function returns the input as the auxiliary data structure. The
insert operation simply modifies the input and sorts from scratch to update
the output. This is equivalent to a from-scratch execution.

2. The sort function returns both input and the output as the auxiliary data
structure. The insert operation inserts the new element into the input and
into the output. In this case, the insert operation can be performed in O(n)
time.

3. The sort function builds a balanced binary-tree representation of the input
list and returns it as the auxiliary data structure. The nodes of the balanced
binary search tree point to their place in the output list. The insert op-
eration performs an insertion into the binary search tree and updates the
output by splicing the inserted element into the output at the right place. To
find the right place in the output, we find the previous and the next elements
in the output by performing a search. These operations can be performed in
O(log n) time by careful use of references and data structures.

The first two approaches are not interesting. They improve performance by
no more than a logarithmic factor, which would not be worth the additional com-
plexity. The third approach, however, improves performance by a linear factor,
which is very significant.4

As this example suggests, designing an efficient incremental data structure
can be difficult even for a relatively simple problem like sorting. In particular,
to support efficient incremental updates, we need to use balanced binary search
trees, whose design and analysis is significantly more complex than that of a
sorting algorithm. This suggests that there is a design-complexity gap between
conventional static problems (where computation data is not subject to modi-
fications) and their dynamic version that can respond efficiently to incremental
modifications. Indeed, the design and analysis of such dynamic data structures
has been an active field in the algorithms community (Section 10.3). We give
more examples of this complexity gap in Section 10.3.

In addition to the design-complexity gap, there are difficulties in using dy-
namic data structures for building large software systems, because they are not
composable. To see why this is important note that conventional algorithms
are directly composable. For example if we have some function f : α → β and
4 Note that we can support modifications to the input in (expected) constant time by

maintaining a mapping between locations and the pointers to update.

8

g : β → γ, then we can compose these two algorithms, g ◦ f , is well defined
and has type α → γ. Concretely, if we want to sort a list of objects and then
apply a map function to the sorted list, then we can achieve this by composing
the functions for sorting and mapping. Not so with dynamic data structures. As
an example suppose that we wish to compose DynamicSort and DynamicMap so
that we can maintain a sorted and mapped list under incremental modifications
to the input. For example, we may want sort a set of (one-dimensional) points
on a line from left to right and then project them onto some parabola by us-
ing a list-map, while we maintain this relationship as the input list is modified
with insertions and deletions. Call the dynamic data structure for this purpose
DynamicSortMap.

If dynamic data structures were composable, we could easily implement
DynamicSortMap by composing DynamicSort and DynamicMap. The difficulty
arises when composing the insert functions. When we insert a new element, we
want it to be mapped on to the parabola and inserted at the right place in the
output. We could update the initial sorting of the points on the line by invoking
the insert of DynamicSort but to apply the insertion to DynamicMap we also
need to know where in the output the new point appears so that we can modify
the input to DynamicMap. In other words, we don’t need just the updated output;
we also need to know how the output has changed, which DynamicSort does not
provide.

In general, for dynamic data structures to be composable, data structures
must return a description of how their output has changed as a result of a mod-
ification to their input. This description must be in some universal “language”
so that any two dynamic data structures can be combined (when possible). We
must also develop some way to apply such output-change descriptions to mod-
ify the input. This can require converting arbitrary modifications to the output
into input-modifications that are acceptable by the composed data structure.
For example, a change that replaces the value of an element in the output must
be converted into a deletion and an insertion, if the composed data structures
do not support replacement directly. The authors are not aware of any concrete
proposals for facilitating such composition of dynamic data structures. Another
approach could be to compute the difference between the outputs of a consecutive
applications of a function and use this difference as an incremental modification.
This approach, however, may be difficult to make work optimally. For exam-
ple, it can require solving the graph isomorphism problem (when comparing two
graphs), which is NP hard.

The approach proposed in this tutorial is different: it enables writing pro-
grams that can respond to arbitrary modifications to their data. The programs
are written in a style similar to conventional programs; in particular, functions
are composable.

9

3 The Programming Model: An Overview

In self-adjusting computation programs are stratified into two components: a
self-adjusting core, or a core for short, and a meta-level mutator.

Self-Adjusting Program

Mutator
TraceState

Data
+

Commands

Result

Inputs
+

Changes

Result

The User

Fig. 2. The self-adjusting computation model.

A (self-adjusting) core is written like a conventional program: it takes an
input and produces an output, while also performing some effects (i.e., writing
to the screen). Like a conventional program, we can execute the core with an
input, performing a a from-scratch or an initial run. Typically, we execute a core
from-scratch only once, hence the name initial run.

After an initial run, the input data or intermediate data, which is generated
during the initial run, can be modified and the core can be asked to update
its output by performing change propagation. This process of modifying data
and propagating the modifications can be repeated as many times as desired.
Change propagation updates the computation by identifying the parts that are
affected by the modifications and re-executing them, while re-using the parts
that are unaffected by the changes. Although change propagation re-executes
only some parts of the core, it is semantically equivalent to a (from-scratch) run:
it is guaranteed to yield the same result as running the core from scratch with
the modified input. The asymptotic complexity of change propagation is never
slower than a from-scratch run and can be dramatically faster. In a typical use,
an initial run is followed by numerous iterations of changing the input data and
performing change propagation. We therefore wish change propagation to be fast
even if this comes at the expense of slowing down the initial run.

The interaction between the core’s initial output and its subsequent inputs
may be complex. We therefore embed a core program in a meta-level mutator
program—the mutator drives the feedback loop between the self-adjusting core
and its data. One common kind of core is a program that interacts with the
user to obtain the initial input for the core, runs the core with that input to
obtain an output, inspects the output, and continues interacting with the user
by modifying the data as directed and performing change propagation as nec-
essary. Another common kind of mutator used in motion simulation combines
user-interactions with event scheduling. While interacting with the user, such a

10

mutator also maintains an event queue consisting of objects that indicate the
comparisons whose outcomes need to be modified and at which time. The mu-
tator performs motion simulation by changing the outcomes of comparisons and
performing change propagation. Change propagation updates the event queue
and the output. In general, mutators can change computation data in arbitrarily
complex ways.

4 An Example: CIRCLES

As a running example, consider an application, called CIRCLES, that displays a
set of circles and identifies the pair of circles that are furthest away from each
other, i.e., the diameter. The user enters the initial set of circles and subsequently
modifies them by inserting new circles, deleting existing circles, changing the
properties of existing circles, etc.

Figure 3 shows an example interaction between a user and CIRCLES. Initially
the user enters some circles, labeled ”a” through ”g”, specifies their color, the
position of their center (the top left corner is the origin) and their radii. CIRCLES
computes the diameter of this set, namely ”c” and ”e”, and renders these circles
as shown on the right. The user is then allowed to modify the set, which s/he
does by changing the color of ”a” from yellow to blue. CIRCLES responds to
this change by re-rendering circle ”a”. The user then inserts a new circle ”h”,
to which CIRCLES responds by displaying the new circle and updating the new
diameter, namely ”c” and ”h.” Finally, the user deletes the new circle ”h”, to
which CIRCLES responds by blanking out ”h”, and updating and displaying the
diameter.

Note that CIRCLES only re-draws the modified circles. Although it is not
apparent in this discussion it also updates the diameter efficiently, much faster
than re-computing the diameter from scratch.

How can we write such a program? One way would be to design and develop
a program that carefully updates the display and the diameter by using efficient
algorithms and data structures. We encourage the reader to think about how
this could be achieved. Some thought should convince the reader that it is a
complex task. Rendering only the affected circles is reasonably simple: we can
do this by keeping track of the circle being modified, or inserted/deleted, and
rendering only that circle. Updating the diameter efficiently, however, is more
difficult. For example, how can we compute the new diameter, when the user
deletes one of the circles that is currently part of the diameter? Can this be
done more efficiently than recomputing from scratch? This turns out to be a
non-trivial question (see Section 10 for some related work). Next, we describe
the ∆ML language and how we can implement CIRCLES in ∆ML.

5 The Delta ML Language

The ∆ML language extends the Standard ML language with primitives for self-
adjusting computation. The language distinguishes between two function spaces:

11

> Welcome to circles.

> Enter the circles, type "done" when finished:

a = yellow (0.88, 0.70) 0.37

b = red (0.36, 2.22) 0.22

c = green (0.94,3.24) 0.34

d = black (2.50,2.61) 0.25

e = orange (3.01, 1.01) 0.25

f = yellow (2.26, 1.30) 0.22

g = brown (1.45, 1.75) 0.25

done

> Rendering circle a.

> Rendering circle b.

> Rendering circle c.

> Rendering circle d.

> Rendering circle e.

> Rendering circle f.

> Rendering circle g.

> The diameter is (c,h)

> Enter the circle to modify or type "quit":

a

> Enter circle or type "delete".

a = blue (0.88, 0.70) 0.75

> Propagating...

> Rendering circle a.

> Done.

> Enter the circle to modify or type "quit":

h

> Enter circle or type "delete".

h = purple (2.26, 0.11) 0.75

> Registered new circle.

> Propagating...

> Rendering circle h.

> The diameter is (c,h).

> Done.

> Enter the circle to modify or type "quit":

h

> Enter circle or type "delete".

"delete"

> Deleted circle h.

> Propagating...

> Rendering circle h (blanking out).

> The diameter is (c,e).

> Done.

a

b
g

e

d

c

f

diameter = (c,e)

a

b
g

e

d

c

f

diameter = (c,e)

h
a

b
g

e

d

c

f

diameter = (c,h)

a

b
g

e

d

c

f

diameter = (c,e)

Fig. 3. An example interaction with circles

12

signature ADAPTIVE = sig
type ’a box
val put : ’a -$> ’a box
val get : ’a box -$> ’a

val mkPut : unit -$> (’k * ’a -$> ’a box)

(** Meta operations **)
val new : ’a -> ’a box
val deref : ’a box -> ’a
val change : ’a box * ’a -> unit

datatype ’a res = Value of ’a | Exn of exn
val call : (’a -$> ’r) * ’a -> ’r res ref
val propagate : unit -> unit

end
structure Adaptive :> ADAPTIVE = struct ... end

Fig. 4. Signature for the Adaptive library.

conventional functions and adaptive functions. Conventional functions are de-
clared using the conventional ML fun syntax for functions. Adaptive functions
are declared with the afun and mfun keywords. The afun keyword declares
an adaptive, non-memoized function; the mfun keyword declares an adaptive,
memoized function. Adaptive functions (memoized and non-memoized) have
the adaptive-function type τ1 -$> τ2. We use the infix operator $ for applying
adaptive (memoized or non-memoized) functions. An adaptive function must be
written in the pure subset of SML but can operate on modifiables using the core
primitives that we describe below.

An adaptive application can appear only in the body of an adaptive function.
We can thus partition a self-adjusting program into a set of adaptive functions,
A, that call each other and other (pure) conventional functions, and a set of
conventional functions, C, that can only call other (possibly imperative) con-
ventional functions. This distinction helps us statically identify the mutator and
the self-adjusting core: the mutator consists of the conventional function set C,
the core consists of the set of adaptive functions A and the conventional function
called by them. 5

Except for afun and mfun keywords, all other self-adjusting computation
primitives are provided by a library. Figure 4 shows the interface to this library.
The box type τ box is the type of a modifiable reference and serves as a container
for changeable data. The put: α -$> α box primitive creates a box and places
the specified value into the box, while the get: α box -$> α primitive returns
the contents of a box. Since the primitives have adaptive function types, they
can only be used within an adaptive function.

The put and get function are all we need to operate on modifiable references.
For the purposes of improving efficiency the library provides an additional prim-
itive: mkPut. The mkPut operation returns a putter that can be used to perform

5 This distinction also helps improve the efficiency of the compilation mechanisms: we
need to treat/compile only adaptive functions specially, other functions are compiled
in the conventional manner.

13

keyed allocation. The putter takes a key and a value to be boxed and returns a
box (associated with the key) holding that value. Section 7 describes the mo-
tivation for mkPut and how it can be used to improve the efficiency of change
propagation.

To facilitate the mutator to perform initial run and to operate on changeable
data, we provide several meta primitives. These meta primitives are impure and
should not be used within adaptive functions; doing otherwise can violate the
correctness of change propagation. 6

To perform an initial run, the interface provides the call primitive. At the
meta-level the result of an initial run is either an ordinary value or an exception.
More concretely, the call operation takes an adaptive function and an argument
to that function, calls the function, and returns its results or the raised excep-
tion in an ordinary reference. Note that the call operation is the only means of
“applying” an adaptive function outside the body of another adaptive function.
The result of the call operation is a reference cell containing the output (dis-
tinguishing between normal and exceptional termination) of the self-adjusting
computation.

The mutator uses the new, change, and deref operations to create and mod-
ify inputs, and to inspect outputs of a self-adjusting computation. The new
operation places a value into box—it is the meta-version of the put operation.
The deref operation returns the contents of a box—it is the meta-version of the
get operation. The change operation takes a value and a box and modifies the
contents of the box to the given value by a destructive update.

A typical mutator starts by setting up the input and calling an adaptive
function to perform an initial run. Interacting with the environment, it then
modifies the input of the adaptive function or other data created by the initial
run, and performs change propagation by calling the meta primitive propagate.
When applied, the propagate primitive incorporates the effects of the change
operations executed since the beginning of the computation or the last call to
propagate.

6 Implementing CIRCLES

We describe a full implementation of CIRCLES in ∆ML. Since self-adjusting
computation facilitates interaction with modifications to data via change propa-
gation, we only need to develop a program for the static case where the input list
of circles does not change. We then use a mutator to drive the interaction of this
program with the user. We first describe the interfaces of libraries for modifiable
lists and geometric data structures. We then describe the implementation of the
mutator and the core itself. To ensure efficiency, the core uses the quick-hull
algorithm for computing convex hulls as a subroutine, which we describe last.

6 Our compiler does not enforce statically this correct-usage principle.

14

signature MOD LIST =

sig

datatype α cell = NIL | CONS of α * α modlist

withtype α modlist = α t

type α t = α modlist

val lengthLessThan: int -> α t -$> bool box

val map: (α -> β) -> α t -$> β t

val filter: (α -> bool) -> α t -$> α t

val reduce: (α -> α -> α) -> α t -> α -$> β t

end

signature POINT =

sig

type t

val fromXY: real * real -> t

val toXY: t -> real * real

end

signature GEOMETRY =

sig

structure Point : POINT

type point

type line = point * point

val toLeft : point * point -> bool

val toRight : point * point -> bool

val dist : point * point -> real

val lineSideTest: line * point -> bool

val distToLine: point * line -> real

end

structure ModList: MOD LIST = . . . (see Figure 10)

structure Geom: GEOMETRY = . . .

structure L = ModList

structure Point = Geom.Point

type circles = Point.t * (string * string * real)

Fig. 5. Modifiable lists, points, and the geometry library.

6.1 Lists and Geometric Data Structures

Figure 5 shows the interface of the libraries that we build upon as well as the
definitions of some structures implementing them.

Modifiable Lists. We use a list data structure to represent the set of circles.
Since we want to insert/delete elements from this list, we want the list to be
modifiable, which we achieve by defining

datatype α cell = NIL | CONS of α * α modlist
withtype α modlist = α cell box

15

A modifiable list of type α modlist is a linked list of cells of type α cell.
A cell is either empty (NIL) or a CONS of an element and a modifiable list. This
definition of lists is similar to conventional lists, except that the tail component
of a CONS cell is boxed. This enables the mutator to change the contents of a
modifiable list by updating the tail modifiables.

As with conventional lists, we can define a number of standard operations
on lists, as shown in Figure 5. The lengthLessThan function takes a number
and a list and returns a boolean modifiable that indicates whether the length of
the list is less than the specified number. The map function takes as arguments a
function that can map an element of the list to a new value and a list; it returns
the list obtained by applying the function to each element in the list. The filter
function takes a predicate and a list and returns the list of elements of the
input list that satisfies the predicate. The reduce function takes as arguments
an associative binary operation defined on the elements of the list, a list, and a
value to return when the list is empty; it returns the value obtained by combining
all elements of the list using the operation.

In our implementation we assume a structure called ModList that implements
the modifiable lists interface, i.e., structure ModList:MOD LIST. For brevity,
we abbreviate the name simply as L, i.e., structure L = ModList. Section 8
presents and implementation of ModList.

Geometric Data Structures and Operations. To operate on circles, we use
some geometric data structures. Figure 5 shows the interface for a point data
structure and a library of geometric operations. A point supports operations
for translation from points into x-y coordinates. The geometry library defines a
line as a pair of points and provides some operations on points and lines. The
toLeft (toRight) operation returns true if and only if the first point is to the
left (right) of the second, i.e., the former’s x-coordinate is less (greater) than
the latter’s. The dist operation returns the distance between two points. The
lineSideTest returns true if the point is above the line, that is the point lies in
the upper half-plane defined by the line. The distToLine returns the distance
between a point and a line.

In our implementation, we assume a structure Geom that implement the ge-
ometry primitives. For brevity, we define a point structure Point as structure
Point = Geom.Point.

We define a circle type as a tuple consisting of a point (center), and a triple
of auxilary information, i.e., a string id, a string color, and a floating point
radius, i.e., type circle = Point.t * (string * string * real).

6.2 Implementing the Mutator

Suppose that we have a self-adjusting function processCircles that takes a list
of circles, finds their diameter, renders them, and returns the name of the circles
on the diameter. The signature of processCircles can be written as:
processCircles: ModList.t -> (string * string) box.

16

fun mutator () =

let

fun realFromString (str) = . . .

fun prompt target str =

let val = print str

val tokens = String.tokens Char.isSpace (TextIO.input TextIO.stdIn)

in case tokens of

t::nil => if t = target then NONE else SOME tokens

| => SOME tokens

end

fun mkCircle tokens =

let val [id, color,xs,ys,rs] = tokens

val (x,y,r) = (realFromString xs,realFromString ys, realFromString rs)

in (Point.fromXY (x,y),(id,color,r)) end

fun readCs cs =

case (prompt "done" ("Enter circle or type ’done’ : /n")) of

NONE => cs

| SOME tk => let val c = mkCircle tk in readCs (new (L.CONS (c,cs))) end

fun findAndModify cs id c =

let fun isId (,(id’, ,)) = id = id’

fun find f l =

case deref l of

L.NIL => raise BadInput

| L.CONS (h,t) => if f h then SOME l else find f t

val SOME m = find isId cs

val L.CONS (h,t) = deref m

in change (m,L.CONS (c,t)) end

fun modify cs =

case (prompt "quit" "Enter the circle to modify or type ’quit’./n") of

NONE => ()

| SOME [id] =>

let val SOME tokens = prompt "" ("Enter circle: /n")

val c = mkCircle tokens

val = findAndModify cs id c

val = (print ‘‘Propagating.../n’’; propagate (); print ‘‘Done./n’’)

in modify cs end

fun main () =

let val = init ()

val = print "Welcome to circles!/n"

val cs = readCs (new L.NIL)

val = call (processCircles, cs)

val = modify cs

in () end

in main () end

Fig. 6. A mutator for circles.

17

Figure 6 shows a mutator that drives this self-adjusting program by interacting
with the user in a style as shown in Figure 3. For brevity, we show here a
simplified mutator that only allows the user to modify the properties of an
existing circles—it does not support insertion or deletion (the complete mutator
is provided in the source distribution). The mutator performs mostly standard
tasks, such as prompting the user, reading data from the user, etc.; the self-
adjusting computation primitives are underlined to assist with the discussion.

Let’s dissect the mutator in a top down style. The main function is the in-
teraction loop. It starts by initializing the self-adjusting computation system,
prints a welcome message, and reads the circles from the user. It then calls
the adaptive processCircles function with the user input to compute the di-
ameter and render the circles on the screen. The computation then proceeds
into a modify-propagate loop with function modify. The function modify asks
the user to modify a circle, applies the modifications by calling findAndModify,
and performs change propagation, which updates the computation. The function
findAndModify traverses the input list using the meta operation deref (used to
access the contents of modifiables) and updates the circle by using the change
meta operation when it finds the circle to modify. 7 The change operation de-
structively updates the contents of the modifiable holding the circle being mod-
ified. The upper half of the mutator code, i.e., the functions realFromString,
prompt, mkCircle, readCs are written using standard techniques. For brevity
the code for realFromString is omitted.

As this example should make clear, the treatment of modifiables and change-
able data at the meta-level (i.e., in the mutator code) is identical to that of
references. We process modifiable lists as though modifiables are simple refer-
ences. We start a self-adjusting computation by calling an adaptive function with
the call meta operation, and perform change propagation with the propagate
meta operation when the user changes the computation data.

6.3 Implementing the Core

Figure 7 shows the code for the self-adjusting core of CIRCLES. For the time
being, the reader should ignore mkPut and read “putM $ (, v)” as “put $ v”;
the use of putM and mkPut is explained in Section 7.

The circle function takes the list of circles, renders them (with the
renderCircle function), and computes their diameter (with the function
findDiameter).

The renderCircle function traverses the list of circles and prints them
on the screen. In this implementation, we simply print the properties of the
circle—rendering a real image would be structurally identical. Two points about
renderCircle differ from the same function operating on an ordinary list. First,
being a modifiable list, the input is stored in a modifiable, and thus, we use the

7 For improved efficiency in finding for the circle to be modified, we may want to use
an auxilary search structure such as a hash-table that maps the circle id’s to the
cons cell that holds that circle.

18

fun map = . . . (* See Figure 10 *)

fun reduce = . . . (* See Figure 11 *)

fun quick hull l = . . . (* See Figure 9 *)

mfun renderCircles l =

let fun printC (c as (p,(id,color,r))) =

let val (x,y) = Point.toXY p

val s = id ^ " : " ^ color

^ " (" ^ Real.toString x ^ ", " ^ Real.toString y ^ ")"

^ " " ^ Real.toString r ^ "/n"

in print ("Rendering circle = " ^ s ^ "/n"); end

in case get $ l of

L.NIL => ()

| L.CONS(h, t) => (printC h ; renderCircles t)

end

afun findDiameter l =

let val putM = mkPut $ ()

fun maxDist (da as (,va),db as (,vb)) =

if (Real.> (va,vb)) then da

else db

fun dist (a as (o a, (id a, ,r a))) (b as (o b, (id b, ,r b))) =

Geom.dist (o a,o b) - r a - r b end

mfun farthestFrom (c,l) =>

let val dist = map (dist c) $ l

val max = reduce maxDist $ dist

in get $ max end

mfun findAllDist l =

let val putM = mkPut $ ()

in case get $ l of

L.NIL => putM $ (NONE, L.NIL)

| L.CONS(h,t) => case get $ t of

L.NIL => putM $ (NONE,L.NIL)

| => let val m = farthestFrom $ (h,t)

in putM $ (SOME m, L.CONS(m, findAllDist $ t))

end

end

val hull = quick hull $ l

val dist = findAllDist $ hull

val max = reduce maxDist $ dist

val ((ida,idb),) = get $ max

val = print ("diameter = : " ^ ida ^ " x " ^ idb ^ "/n")

in putM $ (NONE,(ida,idb)) end

afun processCircles l = (renderCircles l ; findDiameter l)

Fig. 7. The code for the core.

19

self-adjusting get primitive to access its contents. Second, the function is adap-
tive function instead of an ordinary function, because it uses a self-adjusting
primitive (get). Since the function takes more than constant time (it takes lin-
ear time in the size of the list), we decided to make it memoized by declaring it
with mfun.

When deciding what functions to memoize, we observe the following principle:
if an adaptive function performs more than constant work excluding the work
performed by memoized functions called within its body, then we memoize it.

The function findDiameter computes the diameter of the set of circles and
prints it on the screen. We define the diameter as the maximum distance between
any two circles, where the distance between two circles is the minimum distance
between any points belonging to them (we can compute the distance between
two circles by as the distance between their center points minus the sum of their
radii). The function dist computes the distance between two circles. To compute
the diameter, we need some auxilary functions.

The function farthestFrom takes a circle c and a list of circles l and returns
the circle that is farthest away from c. The function computes its result by first
calculating the distance between each circle in the list and c (by using map over
the list of circles) and then selecting the maximum of the list (by using reduce
on the list). Since the function performs calls to adaptive functions, it itself is an
adaptive function. Since it takes more than linear time, we declare it memoized.

The function findAllDist computes for each circle in the input, the circle
that is farthest away from it among the circles that come after it in the input
list. Even findAllDist computes only half of all possible distances, it correctly
finds the maximum distance because distance function is symmetric. Since the
function takes more than constant time (more precisely, O(m2) time in the size
of its input), we declare it memoized.

One way to compute the diameter is to compute the pairwise distances of
all circles, using findAllDist, and then pick the maximum of these distance.
This, however, would not be asymptotically efficient because it requires Θ(n2)
time in the size of the input list. Instead, we first compute the convex hull of
the centers of the circles. We then compute the pairwise distances of the circles
whose centers lie on the hull.

h
a

b
g

e

d

c

f

Fig. 8. An example convex hull.

20

The convex hull of a set of points is the smallest polygon enclosing the points.
Figure 8 shows the convex hull for our running example. It is a property of the
convex hulls that the pair of circles that are farthest away from each other
is on the hull. To find the diameter of the circles efficiently, we can therefore
first find the circles whose centers lie on the convex hull of the centers and
consider only these circles when computing the farthest-apart pair. With this
approach, we improve efficiency: computing convex hulls requires O(n log n) time
and computing finding the diameter requires O(h2) time where h is the number
of circles on the hull, which is generally significantly smaller than the input n.
In our implementation, we use quick hull to compute the convex hull. This
algorithm is not asymptotically optimal but works well in practice.

fun select f (a,b) = if f (a, b) then a else b

fun above (cl as (pl,), cr as (pr,)) (c as (p,)) =

Geom.lineSideTest ((pl, pr), p)

fun distToLine (cl as (pl,), cr as (pr,)) (c as (p,)) =

Geom.distToLine (p, (pl,pr))

afun split (bcl, bcr, l, hull) =

let val putM = mkPut $ ()

mfun splitM (cl, cr, l, hull) =

let val lf = L.filter (above (cl, cr)) $ l

in if get $ (L.lengthLessThan 1 $ lf) then

putM $ (cl, L.CONS (cl, hull))

else let val dist = distToLine (cl,cr)

val selectMax = select (fn (c1,c2) => dist c1 > dist c2)

val max = get $ (combine selectMax $ lf)

in splitM $ (cl, max, lf, splitM $ (max, cr, lf, hull)) end

end

val (cl,cr) = (get $ bcl, get $ bcr)

in splitM $ (cl, cr, l, hull) end

afun quick hull l =

if get $ (L.lengthLessThan 2 $ l) then l

else let fun isMin (c1 as (p1,), c2 as (p2,)) = Geom.toLeft (p1,p2)

fun isMax (c1 as (p1,), c2 as (p2,)) = Geom.toRight (p1,p2)

val min = combine (select isMin) $ l

val max = combine (select isMax) $ l

val lower = split $ (max, min, l, put $ L.NIL)

val hull = split $ (min, max, l, lower)

in hull end

Fig. 9. The code for quick-hull.

21

6.4 Implementing Quickhull

Many algorithms, some optimal, have been proposed for computing convex hulls.
In this example, we use the quick-hull algorithm, which is known to perform
well in practice, except with some distributions of points. Figure 9 shows the
complete code for quick hull. The algorithm uses several geometric primitives.
The function above returns true if and only if the center of the circle c above
the line defined by the centers of the circle cl and cr. The function distToLine
returns the distance from the center of the circle c to the line defined by the
centers of the circles cl and cr. These functions are standard—they perform no
self-adjusting computation.

The split function takes two boxed circles, which define the split-line, a list
of circles, and the partial hull constructed thus far, and it uses the auxiliary
splitM function to extend the hull. The splitM function first eliminates the
list of points below the split-line. If the remaining list is empty, then the hull
consists of the left circle (cl) alone. If the remaining list is non-empty, then the
function finds the circle, max, whose center is furthest away from the line defined
by the split-line. The algorithm then recurses with the two split-lines defined by
the left circle and the max, and the max and the right circle.

The function quick hull computes the initial split-line to be the line whose
endpoints are the left-most and the right-most circles (based on their centers).
Based on this split-line, it then uses split to compute convex hull in two passes.
The first pass computes the lower hull, the second pass computes the complete
hull.

7 Performance

Self-adjusting computation enables writing programs that can respond to modi-
fications to their data in the style of conventional/non-incremental programs. In
this section, we describe how we may analyze the running time of self-adjusting
programs for both from-scratch executions and change propagation, and how we
may improve the performance for change propagation. Our approach is informal;
a precise treatment is out of the scope of this tutorial but the interested reader
can find more discussion in Section 10.2 and the papers referenced there.

For the purposes of this tutorial, we consider so-called monotone computa-
tions only. We define a computation to be monotone if 1) no function is called
with the same arguments more than once, and 2) the modifications being consid-
ered do not affect the execution order and the ancestor-descendant relationships
between function calls. Not all programs are naturally monotone (for interest-
ing classes of input modifications) but all programs can be made so by adding
(extra) arguments to function calls.

When analyzing the performance of self-adjusting programs, we consider two
different performance metrics: running time of from-scratch execution and run-
ning time of change propagation.

22

7.1 From-scratch runs

Analyzing the from-scratch running time of self-adjusting programs is essentially
the same as analyzing conventional programs: we treat the program as a conven-
tional program where all (meta and core) self-adjusting computation primitives
take expected constant time (the expectation is over internal randomization).
More precisely, we can ignore self-adjusting computation primitives when ana-
lyzing the from-scratch running time, the actual running time is only slower by
an expected constant factor. Thus, analysis of the from-scratch runnning time
of self-adjusting programs is standard.

7.2 Stability and Change Propagation

To analyze the running time of change propagation, we first fix the input modifi-
cation that we want change propagation to handle. For example, we can analyze
the running time for change propagation in CIRCLES after inserting (or delet-
ing) a new circle. Considering unit-size modifications (e.g., a single insertion,
a single deletion) often suffices, because it is guaranteed that batch modifica-
tions never take more time than the sum of their parts. For example, if a the
propagation caused by a single application of a modification (e.g., an insertion)
requires O(m) time then propagating k applications of that modification (e.g.,
k insertions) takes no more than O(k ·m) time. Additionally, change propaga-
tion never takes asymptotically more than a from-scratch run (re-running the
program from scratch).

To analyze the time for change propagation, we define a notion of distance
between computations. Suppose that we run our program with some input I,
then we modify the input to I ′ and perform change propagation to update the
output. Intuitively, the time for change propagation will be proportional to the
distance between the two runs.

Before defining distance between runs, we need to identify similar subcompu-
tations. We define two calls of the same function to be similar if their arguments
are the equal and their results are equal. We compare values (arguments and re-
turn values) by using structural equality up to modifiables: two values are equal
if they are the same non-modifiable value or they are the same modifiable, e.g.,
the booleans true are true equal, the modifiable l is equal to itself (regardless
of the contents), but the (distinct) modifiables l and l′ are distinct (regardless of
their contents), therefore the tuple (true,l) is equal to itself but distinct from
(true,l′). If the values are functions (closures) themselves, then we conserva-
tively assume that they are never equal. Note that when computing the distance,
we view modifiables as conventional references.

Next, we define the difference X1 \ X2 between executions X1 and X2 as
the set of function calls in X1 for which no similar call exists in X2. We define
distance between two monotone executions X1 and X2 as the size of the sym-
metric difference between two executions, i.e., |(X1 \X2) ∪ (X2 \X1)|. We say
that a program is O(f(n))-stable for some input change, if the distance between
two executions of the program with any two inputs related by the change is

23

bounded O(f(n)), where n is the maximum input size. Informally, we say that a
program is stable for some input change, if it is poly-logarithmically stable, i.e.,
O(logc n)-stable where c is some constant.

7.3 Programming for Stability

When calculating the stability of a program, we compare modifiables by their
identity (i.e., physical location in memory). This makes stability measurements
sensitive to the whims of non-deterministic memory allocation: if a program
allocates memory in a way that is similar to that of the previous run, then it
can be stable, if not, then it will not be stable 8

To address this unpredictability of non-deterministic memory allocation, we
label each modifiable with a unique key and define two modifiables to be equal if
they have the same key. We support this memory model by performing memory
allocation associatively. In particular, we maintain a hash table that maps keys
to allocated locations. When performing an allocation, we first perform a memo
lookup to see if there already is a location (from a previous run) associated with
the specified key. If so, we re-use it. Otherwise, we allocate a fresh location and
insert it into the memo table for re-use in subsequent runs. The idea is that every
execution of the an allocation with the same key will return the same modifiable.

The∆ML language relaxes the requirement about keys being unique: different
allocations can share the key. In practice, it often seems to suffice for keys to act
as a guide for allocation to help improve sharing between computations, but it
is not necessary for them to be unique. Requiring that allocations are uniquely
keyed, however, simplifies the stability analysis, which we take advantage of in
our discussions of stability.

∆ML supports this keyed allocation strategy through the mkPut function,
which creates a fresh hash table for keyed allocation and returns an associated
putter function. A putter takes two arguments: a key associated with the mod-
ifiable to be allocated and a value to place into the allocated modifiable. We
often create putters locally for each function. Since each putter has its own hash
function, creating local putters helps eliminate key collision between different
functions: allocations performed by different putters can share the same keys
without causing a collision.

8 Modifiable Lists

We now turn to the implementation of lists and their asymptotic complexity
under change propagation. Figure 10 shows the definition and implementation
of modifiable lists and some functions on modifiable lists. A modifiable list of type
α modlist is a boxed cell where a cell is either empty or a CONS cell consisting
of an element of type α and a modifiable list.
8 Since change propagation re-executes only parts of a program, the contrast is less

stark in reality. Still, non-determinism in memory allocation can detrimentally affect
stability.

24

structure ModList =

struct

datatype α cell = NIL | CONS of α * α modlist

withtype α modlist = α cell box

type α t = α modlist

afun lengthLessThan (l: ’a modlist) : bool box =

let putM = mkPut $ ()

afun len (i,l) =

if i >= n then false

else case get $ l of

NIL => true

| CONS(h,t) => len $ (i+1,t)

in putM $ (NONE, len $ (0,l)) end

afun map (f: ’a -> ’b) (l: ’a modlist) : ’b modlist =

let val putM = mkPut $ ()

mfun m l =

case get $ l of

NIL => NIL

| CONS(h,t) => CONS (f h, putM $ (SOME h, m t))

in putM $ (NONE, m l) end

end

Fig. 10. Some list primitives.

Modifiable lists are defined in a similar way to conventional lists, with the
small but crucial difference that the tail of each cell is placed in a modifiable.
This enables the mutator to modify the contents of the list by inserting/deleting
elements. Thus, we can use modifiable lists to represent a set that changes over
time.

As with conventional lists, we can write various primitive list functions. Here
we describe how to implement three functions on lists: lengthLessThan, map,
and reduce. Omitting the self-adjusting primitives, the first two functions are
nearly identical to their conventional counterparts and therefore have compara-
ble asymptotic complexity; the complexity of reduce is discussed below.

In our implementation, we observe the following convention. Each list func-
tion creates a putter and defines a locally-scoped work function to perform the
actual work. When using putters, we key the tail modifiable of a CONS cell
by SOME h where h is the head element. This identifies the modifiables by the
head item in the same CONS cell. In our analysis, we assume that lists contain
no duplicates—thus, the tail modifiables are uniquely identified by the head
elements. For boxing the head of a list we use the key NONE.

The function lengthLessThan takes an integer and returns a boxed boolean
indicating whether the length of the list is less than the supplied integer. Many
self-adjusting programs use this function. For example, in quick hull we check
whether the input list has two or fewer elements and return the list directly if

25

so. This is often preferable to simply returning the length of the list, because
some computations do not directly depend on the length of the list, but rather
on whether the length is less than some value. Having this function allows us
to express such a dependence more precisely, allowing for more efficient change
propagation. The implementation of lengthLessThan follows our description:
the outer function allocates a modifiable with putM for the result and calls the
work function len with the argument.

The map function takes a function and a list and produces another list by
applying the function to the elements of the input list. The outer function creates
a putter by using mkPut. The work function m uses the head h of each CONS cell
to key the tail modifiable with SOME h. The top-level call to the work function
is boxed using the key NONE. This version of map is O(1)-stable with respect to
single insertions or deletions.

Consider running map with the identity function on lists [. . .,1,3,. . .] and
[. . .,1,2,3,. . .] where each list has no repetitions and both lists are identical
except for the element 2 (which occurs at an arbitrary position). Recall that the
head of a CONS cell is used to key the tail cell. For example, in the first list the
element 1 is used as a key to allocate box l1, which contains cell CONS(3,l3). Sim-
ilarly, the result of map on the first list will have box l′1 holding cell CONS(3,l′3).
Therefore the work function on the first list will include calls:

. . ., m l0 = CONS(1,l1), m l1 = CONS(3,l3), m l3 = · · ·, . . .

and the work function on second list will include calls:

. . ., m l0 = CONS(1,l1), m l1 = CONS(2,l2), m l2 = CONS(3,l3), m l3 = · · ·, . . .

Therefore, the two runs differ only by three calls: m l1 = CONS(3,l3), m l1 =
CONS(2,l2), and m l2 = CONS(3,l3), so map is O(1) stable for single insertions
or deletions.

Many programs, e.g., most of those considered in this tutorial, are naturally
stable or can be made stable with relatively small changes. When the program
is not stable, we often need to choose a different algorithm.

As an example of a program that is not naturally, consider the list func-
tion reduce takes a list and an associative binary operator, and produces a
single value by applying the operator to the elements of the list, e.g., applying
reduce [1,2,3,4] with addition operation yields 10. A typical implementation
of reduce (shown below) traverses the list from left to right while maintaining
an accumulator of the partial results for the visited prefix.

afun reduce f base l =
let mfun red (l,a) =

case get $ l of NIL => put $ a
| CONS(h,t) => red $ (t,f(h,a))

in red $ (l,base) end

26

fun reduce mkRandSplit f base = afn l =>

let afun halfList l =

let val putM = mkPut $ ()

val randSplit = mkRandSplit ()

afun redRun (v,l) =

case get $ l of

NIL => (v, l)

| CONS (h, t) =>

if randSplit h then (f (v,h), t)

else redRun $ (f(v,h), t)

mfun half l =

case get $ l of

NIL => NIL

| CONS (h, t) =>

let val (v, tt) = redRun $ (h,t)

val ttt = half $ tt

in CONS(v, putM $ (SOME h, ttt)) end

in putM $ (NONE, half $ l) end

mfun mreduce l =

let val putM = mkPut $ ()

if get $ ((lengthLessThan 2) $ l) then

case get $ l of

NIL => base

| CONS(h,) => h

else mreduce $ (halfList $ l)

in putM $ (NONE, mreduce $ l) end

Fig. 11. The code for list reduce.

This implementation of reduce is not stable. To see why let’s consider adding
integer elements of a list with inputs that differ by a single key. More precisely
consider the case when one list has one extra element at the beginning, e.g.,
[1,2,3,4,. . .] and [2,3,4,. . .]. The function calls performed have the form,
red (li, ai) where li is the modifiable pointing to the ith cons cell and ai is the
sum of the elements in the first i−1 cells. With the first input, the accumulators
are ai = (0, 1, 3, 6, 10, . . .). With the second input, the accumulators are one
more than the corresponding accumulator in the first case, ai = (0, 2, 5, 9, . . .
). Thus, no two prefix sums are the same and a linear number of operations (in
the length of the input) will differ. Consequently, the algorithm is linear stable,
i.e., change propagation performs just as good re-computing from scratch.

Figure 11 shows a logarithmic stable solution for reduce. This implementa-
tion uses the classic technique of random-sampling to compute the result. The
idea is to ”halve” the input list into smaller and smaller lists until only a single
element remains. To halve the list (halfList), we choose a randomly selected

27

subset of the list and combine the chosen elements to their closest element to
the left (redRun). Note that a deterministic approach, where, for example the
elements are combined in pairs, is not stable, because deleting/inserting an el-
ement can cause a large change by shifting the positions of many elements by
one. Note that we do not require commutativity—associativity alone suffices.
For randomization, we use a random hash function that returns 0 or 1 with
probability 1/2.

The approach requires expected linear time because each application of
halfList reduces the size of the input by a factor of two (in expectation).
Thus, we perform a logarithmic number of calls to halfList with inputs whose
size decreases exponentially.

0 18 5 3 2 9 6 4

0 113 3 2 15 4

0 518 15

18 20

38

0 18 5 3 2 7 9 6 4

0 113 3 2 7 15 4

0 525 15

25 20

45

Fig. 12. Example stable list-reduce.

The approach is O(log n)-stable in expectation (over internal randomization
of mkRandomSplit). We do not prove this bound here but give some intuition
by considering an example. Figure 12 shows executions of reduce with lists

28

 0

 1

 2

 3

 4

 5

 6

 7

 0 20000 40000 60000 80000 100000

T
im

e(
s)

Input Size

Self-Adjusting
Conventional

Fig. 13. Time for a from-scratch runs conventional and self-adjusting.

[0,8,5,3,2,9,6,4,1)] and [0,8,5,3,2,7,9,6,4,1)] to compute the sum of
the integers in the lists. The two lists differ by box 7. Comparing two executions,
only the function calls that touch the highlighted cells differ. It is not difficult
to show that there are a constant number of such cells in each level and, based
on this, to prove the O(log n)-stability bound.

9 Experimental Results

We present a simple experimental evaluation of CIRCLES. In our evaluations,
we compare two versions of CIRCLES: conventional and self-adjusting. The code
for self-adjusting version has been presented in this tutorial. The code for the
conventional version is automatically derived from the self-adjusting version by
removing the primitives on modifiable references and replacing (memoized and
non-memoized) adaptive functions with conventional functions.

All of the experiments were performed on a 2.66Ghz dual-core Xeon machine,
with 8 GB of memory, running Ubuntu Linux 7.10. We compiled the applications
with our compiler with the option ”-runtime ram-slop 0.75,” directing the run-
time system to allocate at most 75% of system memory. Our timings measure
the wall-clock time (in seconds).

Figure 13 shows the run-time for executing the conventional and from-scratch
versions of CIRCLES with up to 100,000 circles. We generate the input to the
these executions randomly by picking the center of the circle uniformly randomly
from within a unit square and picking a uniformly random radius between 0.0
and 1.0. The measurement shows that the self-adjusting version is about 5 times
slower than the conventional version. A significant portion of this overhead is
garbage collection: when excluding garbage-collection time self-adjusting version
is about 3.5 times slower than the conventional. Although the overhead may be
improved significantly by more careful compiler optimization techniques directed
to self-adjusting programs (which the current implementation of our compiler
does not employ), we consider it to be acceptable, because, in self-adjusting

29

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20000 40000 60000 80000 100000

T
im

e
(m

s)

Input Size

Change Propagation

Fig. 14. Time for change propagation.

computation, from-scratch executions are infrequent. In typical usage, we exe-
cute a self-adjusting program from scratch once and then perform all subsequent
updates to the input by utilizing change propagation.

Figure 14 shows the average time for change propagation for a single inser-
tion/deletion for varying input sizes. The measurement is performed by repeating
an update-step for each circle in order. In each step, we remove the circle from
the input and perform change propagation. We then re-insert the circle and per-
form change propagation. We compute the average time for an insertion/deletion
as the total time it takes to apply the update step to each element in the list
divided by the number of steps, i.e., 2n where n is the number of circles in the
input. As the figure shows the time for change propagation is rather uneven but
increases very slowly over time (less than doubles between the smallest and the
largest input sizes). The reason for the unevenness is the input-sensitive nature
of CIRCLES: the time to update the diameter critically depends on the number of
circles that are on the hull, which also determines the update time for quick-hull.

 0

 400

 800

 1200

 1600

 2000

 0 20000 40000 60000 80000 100000

S
pe

ed
up

Input Size

Speedup

Fig. 15. Speedup of change propagation

30

Figure 15 shows the speedup measured as the time for a from-scratch execu-
tion of the conventional version of CIRCLES divided by the time for change prop-
agation. As can be seen, change propagation appears to be faster by an asymp-
totic linear factor, delivering increasingly significant speedups. The speedups for
larger inputs exceed three orders of magnitude. The speedups are significant
even with relatively small input sizes.

10 Related Work

The problem of having computation respond to small modifications to their
data has been studied extensively in several communities. Earlier work in the
programming-languages community, broadly referred to as incremental com-
putation, focused on developing techniques for translating static/conventional
programs into incremental programs that can respond automatically to modi-
fications to their input. Recent advances on self-adjusting computation gener-
alized these approaches and dramatically improved their effectiveness. In the
algorithms community, researchers proposed so called dynamic and kinetic data
structures for addressing incremental problems. In this section, we briefly
overview the earlier work on incremental computation (Section 10.1), recent
work on self-adjusting computation (Section 10.2), and some of the work on
algorithms community (Section 10.3).

10.1 Incremental Computation

Incremental computation offers language-centric techniques for developing pro-
grams that can automatically respond to modifications to their data. The most
effective techniques are based on dependence graphs, memoization, and partial
memoization.

Dependence-graph techniques record the dependences between data in a
computation and rely on a change-propagation algorithm to update the com-
putation when the input is modified. Demers, Reps, and Teitelbaum [27] and
Reps [57] introduced the idea of static dependence graphs and presented a change-
propagation algorithm for them. Hoover generalized the approach outside the do-
main of attribute grammars [45]. Yellin and Strom used the dependence graph
ideas within the INC language [69], and extended it by having incremental com-
putations within each of its array primitives. Static dependence graphs have
been shown to be effective in some applications, e.g., syntax-directed computa-
tions. But they are not general-purpose, because they do not permit the change-
propagation algorithm to update the dependence structure. For example, the
INC language [69], which uses static dependence graphs for incremental updates,
does not permit recursion.

The limitations of static dependence graphs motivated researchers to consider
alternative approaches. Pugh and Teitelbaum [55] applied memoization (also
called function caching) to incremental computation. Memoization, a classic idea
that goes back to the late fifties [21, 50, 51], applies to any purely functional

31

program and therefore is more broadly applicable then static dependence graphs.
Since the work of Pugh and Teitelbaum, others have investigated applications of
various forms of memoization to incremental computation [1, 49, 43, 61, 6]. The
idea behind memoization is to remember function calls and their results and re-
use them when possible. In the context of incremental computation, memoization
can improve efficiency when executions of a program with similar inputs perform
similar function calls. Although the reader may expect this to be intuitively the
case, it turns out that the effectiveness of memoization critically depends on the
structure of the program and the kind of the input modification. For a given
computation, it is often possible to find input modifications that prevent a large
fraction of function calls from being re-used. Intuitively, the problem is that
with memoization all function calls that consume a modified data and all their
ancestors in the function call tree need to be re-executed (because these functions
will have modified arguments).

Other approaches to incremental computation are based on partial evalua-
tion [65, 32]. Sundaresh and Hudak’s approach [65] requires the user to fix the
partition of the input that the program will be specialized on. The program
is then partially evaluated with respect to this partition and the input outside
the partition can be modified incrementally. The main limitation of this ap-
proach is that it allows input modifications only within a predetermined parti-
tion. Field [33], and Field and Teitelbaum [32] present techniques for incremental
computation in the context of lambda calculus. Their approach is similar to Hu-
dak and Sundaresh’s, but they present formal reduction systems that optimally
use partially evaluated results.

10.2 Self-Adjusting Computation

Foundations. The first work on self-adjusting computation [5], called Adaptive
Functional Programming (AFP), generalized dependence-graph approaches by
introducing dynamic dependence graphs (DDGs), by providing a change propa-
gation algorithm for DDGs, and by offering a technique for constructing DDGs
from program executions. Change propagation with DDGs is able to update the
dependence structure of the DDG by inserting and deleting dependences as nec-
essary. This makes it possible to apply the approach to any purely functional
program. Type-safe linguistic facilities for writing adaptive programs guarantee
safety and correctness of change propagation. A prototype implementation in
SML was provided but the implementation did not enforce the safety proper-
ties statically. Carlsson gave a safe implementation of the proposed linguistic
facilities in Haskell [23].

Although DDGs are general purpose, their effectiveness is limited: certain
modifications can require as much time as re-computing from scratch. Subse-
quent work identified a duality between DDGs and memoization and provided
linguistic and algorithmic techniques for combining them [4]. The linguistic tech-
niques enable annotating adaptive programs [5] with particular memoization
constructs. The algorithms provide efficient re-use of computations (via change

32

propagation) without significantly slowing down a from-scratch run. An experi-
mental evaluation showed that the approach can speedup computations by orders
of magnitude (increasing linearly with the input size) while causing the initial
run to slowdown by moderate amounts. Follow-up work gave a formal semantics
for combining memoization and DDGs and proved it correct with mechanically
verified proofs [12].

The aforementioned work on self-adjusting computation assumes a form of
purely functional programming. Although modifiables are in fact a form of ref-
erences, they cannot be updated destructively by self-adjusting programs—only
the mutator is allowed to update modifiables destructively. This can limit the
applicability of the approach to problems that are suitable for purely functional
programs only. Recent work [3] showed that self-adjusting computation may be
extended to programs that update memory imperatively by proposing update-
able modifiable references, which ∆ML supports (we do not discuss updateable
references in this tutorial).

The aforementioned approaches to self-adjusting computation rely on spe-
cialized linguistic primitives that require a monadic programming style. These
primitives enable tracking dependences selectively, i.e., only the dependences on
data that can change over time are tracked. If selective dependence tracking is
not needed, then it is possible to track all dependences without requiring pro-
grammer annotations [2]. The monadic primitives make it cumbersome to write
self-adjusting program and also require substantial restructuring of existing code.
Recent work developed direct language support self-adjusting computation and
provided a compiler for the language [48], which ∆ML is based on. Having di-
rect language and compiler support not only simplifies developing self-adjusting
programs but also makes it possible to give a precise cost-semantics that enables
programmer to analyze the time for change propagation [47].

All of the aforementioned work on self-adjusting computation extends type-
safe, high level languages such as Standard ML and Haskell. In an orthogonal
line of work, we develop techniques for supporting self-adjusting programs with
low-level languages such as C [39]. Low level language present some challenges,
because self-adjusting-computation primitives are higher order and they require
tracking side effects. They do, however, offer a more explicit cost model and
some interesting opportunities for improving performance. For example memory
management and change propagation may be integrated to support garbage
collection without traversing memory [38].

Applications. Self-adjusting computation has been applied to a number of
problems from a broad set of application domains such as motion simulation,
machine learning, and incremental invariant checking.

Some of these applications are developed and implemented using the linguis-
tic techniques described in earlier work and in this paper. One such class of
applications is motion simulators for various geometric properties. In these ap-
plications, we employ a mutator that starts with an initial run of a self-adjusting
program. The mutator then performs motion simulation by maintaining a sim-

33

ulation time and modifying the outcomes of comparisons performed between
moving objects (in accordance with the specified motion plans), updating the
computation via change propagation. Using this approach, we obtain motion sim-
ulators from purely functional programs by translating them into self-adjusting
programs and by combining them with the mutator for motion simulation. Since
change propagation is fully general and can handle arbitrary modifications to
the input, the approach enables processing a broad range of modifications dur-
ing motion simulation. It also helps address efficiently some critical robustness
issues that arise in motion simulation. Previous work applies the approach to a
number of problems from two [10] and three dimensions [8, 9]. The solutions on
three-dimensional problems made progress on well-known open problems.

Other applications use self-adjusting computation to obtain dynamic algo-
rithms for specific problems. One such application is the tree contraction algo-
rithm of Miller and Reif [52], whose self-adjusting version provides an efficient
solution to the problem of dynamic trees [7, 11]. We applied the same approach
to statistical inference, a classic problem in machine learning, to show that statis-
tical inference can be performed under incremental modifications efficiently [13,
14]. These results made progress on open problems related to incremental up-
dating of inferred statistical properties as the underlying models change. In all
these applications, the mutators typically perform discrete modifications such as
insertions/deletions of edges and nodes into/from a tree, a graph, or a statistical
model.

Shankar and Bodik [62] adapted self-adjusting computation techniques (more
specifically the approach presented in an earlier paper [4]) for the purposes of
incremental invariant checking in Java. In their approach, the Java program acts
as a mutator by modifying the contents of memory. Such modifications trigger re-
evaluation of program invariants, via change propagation, expressed in a separate
purely functional language. Instead of tracking dependences selectively, they
track all dependences by treating all memory cells as modifiables. This treatment
of memory is similar to a formulation of self-adjusting computation proposed
in the first author’s thesis [2]. They show that the approach can dramatically
speedup invariant checking during evaluation.

10.3 Dynamic Algorithms

In the algorithms community, researchers approach the problem of incremen-
tal computation from a different perspective. Rather than developing general-
purpose techniques for transforming static programs to incremental programs
that can respond to modifications to their data, they develop so called dynamic
algorithms or dynamic data structures (e.g., [64, 25, 30]). Dynamic data struc-
tures facilitate the user to modify the data by making small modifications, e.g.,
inserting/deleting elements. For example a dynamic data structure for comput-
ing the diameter (points furthest away from each other) allows the user to in-
sert/delete points into/from a set of points while updating the diameter accord-
ingly. We considered other example dynamic algorithms in Section 2.

34

By taking advantage of the structure of the particular problem being con-
sidered, the algorithmic approach facilitates designing efficient, often optimal
algorithms. In fact, previous work shows that there is often a linear-time gap
between a dynamic algorithm and its static version in terms of responding to
incremental modifications to data. Taking advantage of incrementality, however,
often comes at an increased complexity of design, analysis, and implementa-
tion. Dynamic algorithms can be significantly more difficult to design, analyze,
and implement than their static counterparts. For example, efficient algorithms
for computing the convex hull of a set of points in the plane are relatively
straightforward. Efficient dynamic algorithms for convex hulls that can respond
to incremental modifications (e.g., insertion/deletion of a point), however, are
significantly more complicated. In fact this problem has been researched since
the late 70’s (e.g., [54, 53, 42, 19, 24, 22, 16]). Similarly, computing efficiently the
diameter of a point set as the point set changes requires sophisticated algo-
rithms (e.g., [46, 28, 29, 58]). Convex hulls and diameters are not the exception.
Another example is Minimum Spanning Trees (MST), whose dynamic version
has required more than a decade of research to solve efficiently [34, 31, 41, 40,
44], while its static/conventional version is straightforward. Other examples in-
clude the problem of dynamic trees, whose various flavors have been studied
extensively [63, 64, 26, 56, 40, 68, 17, 35, 18, 67, 66].

Because dynamic algorithms are designed to support a particular set of mod-
ifications, they are highly specialized (an algorithm may be efficient for some
modifications to data but not others), naturally more complex than their static
versions, and are not composable (Section 2). These properties make them dif-
ficult to adapt to different problems, implement, and use in practice.

Algorithms researchers also study a closely related class of data structures,
called kinetic data structures, for performing motion simulations efficiently [20].
These data structures take advantage of the incremental nature of continu-
ous motion (Section 2) by updating computed properties efficiently. Many ki-
netic data structures have been proposed and some have also been implemented
(e.g., [15, 36] for surveys). These data structures share many characteristics of dy-
namic data structures. They also pose additional implementation challenges [15,
37, 60, 59], due to difficulties with motion modeling and handling of numerical
errors.

11 Conclusion

This tutorial presents a gentle introduction to the ∆ML (Delta ML) language.
The compiler and the source code for the examples may be reached via the
authors web pages.

References

1. Mart́ın Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis and Caching
of Dependencies. In Proceedings of the International Conference on Functional
Programming, pages 83–91, 1996.

35

2. Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer
Science, Carnegie Mellon University, May 2005.

3. Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting
computation. In Proceedings of the 25th Annual ACM Symposium on Principles
of Programming Languages, 2008.

4. Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An ex-
perimental analysis of self-adjusting computation. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 2006.

5. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive Functional Pro-
gramming. In Proceedings of the 29th Annual ACM Symposium on Principles of
Programming Languages, pages 247–259, 2002.

6. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In
Proceedings of the 30th Annual ACM Symposium on Principles of Programming
Languages, 2003.

7. Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick
Woo. Dynamizing static algorithms with applications to dynamic trees and history
independence. In ACM-SIAM Symposium on Discrete Algorithms, 2004.

8. Umut A. Acar, Guy E. Blelloch, and Kanat Tangwongsan. Kinetic 3D Convex
Hulls via Self-Adjusting Computation (An Illustration). In Proceedings of the 23rd
ACM Symposium on Computational Geometry (SCG), 2007.

9. Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Ro-
bust Kinetic Convex Hulls in 3D. In Proceedings of the 16th Annual European
Symposium on Algorithms, September 2008.

10. Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic
Algorithms via Self-Adjusting Computation. In Proceedings of the 14th Annual
European Symposium on Algorithms, pages 636–647, September 2006.

11. Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimental analysis of
change propagation in dynamic trees. In Workshop on Algorithm Engineering and
Experimentation, 2005.

12. Umut A. Acar, Matthias Blume, and Jacob Donham. A consistent semantics of self-
adjusting computation. In Proceedings of the 16th Annual European Symposium
on Programming (ESOP), 2007.

13. Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive
Bayesian Inference. In Neural Information Processing Systems (NIPS), 2007.

14. Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive
Inference on General Graphical Models. In Uncertainty in Artificial Intelligence
(UAI), 2008.

15. Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Erickson,
Michael Isard, Sariel Har-Peled, John Hershberger, Christian Jensen, Lydia
Kavraki, Patrice Koehl, Ming Lin, Dinesh Manocha, Dimitris Metaxas, Brian Mir-
tich, David Mount, S. Muthukrishnan, Dinesh Pai, Elisha Sacks, Jack Snoeyink,
Subhash Suri, and Ouri Wolefson. Algorithmic issues in modeling motion. ACM
Comput. Surv., 34(4):550–572, 2002.

16. Giora Alexandron, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data
structures for convex hulls and upper envelopes. In 9th Workshop on Algorithms
and Data Structures (WADS). Lecture Notes in Computer Science, volume 3608,
pages 269—281, aug 2005.

17. Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Min-
imizing diameters of dynamic trees. In Automata, Languages and Programming,
pages 270–280, 1997.

36

18. Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Main-
taining information in fully-dynamic trees with top trees, 2003. The Computing
Research Repository (CoRR)[cs.DS/0310065].

19. Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mo-
bile data. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete
algorithms, pages 747–756. Society for Industrial and Applied Mathematics, 1997.

20. Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for
mobile data. Journal of Algorithms, 31(1):1–28, 1999.

21. Richard Bellman. Dynamic Programming. Princeton University Press, 1957.
22. Gerth Stolting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings

of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pages
617–626, 2002.

23. Magnus Carlsson. Monads for Incremental Computing. In Proceedings of the 7th
ACM SIGPLAN International Conference on Functional programming, pages 26–
35. ACM Press, 2002.

24. Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic
amortized time. In Proceedings of the the 40th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 92–99, 1999.

25. Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry.
Proceedings of the IEEE, 80(9):1412–1434, 1992.

26. R. F. Cohen and R. Tamassia. Dynamic expression trees and their applications.
In Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 52–61, 1991.

27. Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental Evaluation of
Attribute Grammars with Application to Syntax-directed Editors. In Proceedings
of the 8th Annual ACM Symposium on Principles of Programming Languages,
pages 105–116, 1981.

28. David Eppstein. Average case analysis of dynamic geometric optimization. In
SODA ’94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 77–86, Philadelphia, PA, USA, 1994. Society for Industrial and
Applied Mathematics.

29. David Eppstein. Incremental and decremental maintenance of planar width. In
SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 899–900, Philadelphia, PA, USA, 1999. Society for Industrial
and Applied Mathematics.

30. David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph algorithms.
In Mikhail J. Atallah, editor, Algorithms and Theory of Computation Handbook,
chapter 8. CRC Press, 1999.

31. David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
Sparsification—a technique for speeding up dynamic graph algorithms. Journal
of the ACM, 44(5):669–696, 1997.

32. J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus. In
Proceedings of the ACM ’90 Conference on LISP and Functional Programming,
pages 307–322, June 1990.

33. John Field. Incremental Reduction in the Lambda Calculus and Related Reduc-
tion Systems. PhD thesis, Department of Computer Science, Cornell University,
November 1991.

34. Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing, 14:781–798, 1985.

35. Greg N. Frederickson. A data structure for dynamically maintaining rooted trees.
Journal of Algorithms, 24(1):37–65, 1997.

37

36. L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 1117–1134. Chapman and Hall/CRC,
2nd edition, 2004.

37. Leonidas Guibas and Daniel Russel. An empirical comparison of techniques for
updating delaunay triangulations. In SCG ’04: Proceedings of the twentieth annual
symposium on Computational geometry, pages 170–179, New York, NY, USA, 2004.
ACM Press.

38. Matthew A. Hammer and Umut A. Acar. Memory management for self-adjusting
computation. In ISMM ’08: Proceedings of the 7th international symposium on
Memory management, pages 51–60, 2008.

39. Matthew A. Hammer, Umut A. Acar, and Yan Chen. CEAL: A C-based lan-
guage for self-adjusting computation. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, June 2009.

40. Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. Journal of the ACM, 46(4):502–
516, 1999.

41. Monika Rauch Henzinger and Valerie King. Maintaining minimum spanning trees
in dynamic graphs. In ICALP ’97: Proceedings of the 24th International Colloquium
on Automata, Languages and Programming, pages 594–604. Springer-Verlag, 1997.

42. John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull
algorithm. BIT, 32(2):249–267, 1992.

43. Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Using Precise
Dependencies. In Proceedings of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 311–320, 2000.

44. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

45. Roger Hoover. Incremental Graph Evaluation. PhD thesis, Department of Com-
puter Science, Cornell University, May 1987.

46. Ravi Janardan. On maintaining the width and diameter of a planar point-set
online. In ISA ’91: Proceedings of the 2nd International Symposium on Algorithms,
pages 137–149, London, UK, 1991. Springer-Verlag.

47. Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. A cost semantics for self-
adjusting computation. In Proceedings of the 26th Annual ACM Symposium on
Principles of Programming Languages, 2009.

48. Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling self-adjusting pro-
grams with continuations. In Proceedings of the International Conference on Func-
tional Programming, 2008.

49. Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static Caching for Incremen-
tal Computation. ACM Transactions on Programming Languages and Systems,
20(3):546–585, 1998.

50. John McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages
33–70. North-Holland, Amsterdam, 1963.

51. D. Michie. ”Memo” Functions and Machine Learning. Nature, 218:19–22, 1968.
52. Gary L. Miller and John H. Reif. Parallel tree contraction and its application.

In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer
Science, pages 487–489, 1985.

53. Mark H. Overmars and Ja van Leeuwen. Maintenance of configurations in the
plane. Journal of Computer and System Sciences, 23:166–204, 1981.

38

54. F. P. Preparata. An optimal real-time algorithm for planar convex hulls. Commun.
ACM, 22(7):402–405, 1979.

55. William Pugh and Tim Teitelbaum. Incremental computation via function caching.
In Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 315–328, 1989.

56. Tomasz Radzik. Implementation of dynamic trees with in-subtree operations. ACM
Journal of Experimental Algorithms, 3:9, 1998.

57. Thomas Reps. Optimal-time incremental semantic analysis for syntax-directed
editors. In Proceedings of the 9th Annual Symposium on Principles of Programming
Languages, pages 169–176, 1982.

58. G. Rote, C. Schwarz, and J. Snoeyink. Maintaining the approximate width of
a set of points in the plane. In Proceedings of the 5th Canadian Conference on
Computational Geometry, pages 258–263, 1993.

59. Daniel Russel. Kinetic Data Structures in Practice. PhD thesis, Department of
Computer Science, Stanford University, March 2007.

60. Daniel Russel, Menelaos I. Karavelas, and Leonidas J. Guibas. A package for exact
kinetic data structures and sweepline algorithms. Comput. Geom. Theory Appl.,
38(1-2):111–127, 2007.

61. João Saraiva, S. Doaitse Swierstra, and Matthijs F. Kuiper. Functional incremental
attribute evaluation. In CC ’00: Proceedings of the 9th International Conference
on Compiler Construction, pages 279–294, London, UK, 2000. Springer-Verlag.

62. Ajeet Shankar and Rastislav Bodik. DITTO: Automatic Incrementalization of
Data Structure Invariant Checks (in Java). In Proceedings of the ACM SIGPLAN
2007 Conference on Programming language Design and Implementation, 2007.

63. Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362–391, 1983.

64. Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, 1985.

65. R. S. Sundaresh and Paul Hudak. Incremental compilation via partial evalua-
tion. In Conference Record of the 18th Annual ACM Symposium on Principles of
Programming Languages, pages 1–13, 1991.

66. Robert Tarjan and Renato Werneck. Dynamic trees in practice. In Proceeding of
the 6th Workshop on Experimental Algorithms (WEA 2007), pages 80—93, 2005.

67. Robert Tarjan and Renato Werneck. Self-adjusting top trees. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2005.

68. Robert E. Tarjan. Dynamic trees as search trees via euler tours, applied to the
network simplex algorithm. Mathematical Programming, 78:167–177, 1997.

69. D. M. Yellin and R. E. Strom. INC: A Language for Incremental Computations.
ACM Transactions on Programming Languages and Systems, 13(2):211–236, April
1991.

