
A Novel SoC Design Methodology Combining Adaptive
Software and Reconfigurable Hardware

Marco D. Santambrogio
DEI - Politecnico di Milano

e-mail: marco.santambrogio@polimi.it

Vincenzo Rana
DEI - Politecnico di Milano

e-mail: vincenzo.rana@microlab-mi.net

Seda Ogrenci Memik
Northwestern University

e-mail: seda@ece.northwestern.edu

Umut A. Acar
Toyota Technological Institute at Chicago

e-mail: umut@tti-c.org

Donatella Sciuto
DEI - Politecnico di Milano

e-mail: sciuto@elet.polimi.it

ABSTRACT
Reconfigurable hardware is becoming a prominent compo-
nent in a large variety of SoC designs. Reconfigurability al-
lows for efficient hardware acceleration and virtually unlim-
ited adaptability. On the other hand, overheads associated
with reconfiguration and interfaces with the software com-
ponent need to be evaluated carefully during the exploration
phase. The aim of this paper is to identify the best trade-off
considering application-specific features in software, which
can lend itself to software-based acceleration and lead to
a revision of the view that certain computationally inten-
sive tasks can only be accelerated through hardware. In or-
der to validate the effectiveness of our proposed techniques,
we built an extensive development and experimental setup,
bringing together the MLTon-based programming environ-
ment and physical mapping of the software and hardware
onto a real dynamically reconfigurable SoC system.

1. INTRODUCTION
Systems on a Chip (SoCs) have been evolving in complex-

ity and composition in order to meet increasing performance
demands and serve new application domains. Changing user
requirements,new protocol and data-coding standards, and
demands for support of a variety of different user applica-
tions, require flexible hardware and software functionality
long after the system has been manufactured. Inclusion of
hardware reconfigurability addresses this need and allows a
deeper exploration of the design space. However, this sce-
nario turns the conventional embedded design problem into
a more complex one, where the reconfiguration of hardware
is an additional explicit dimension in the design of the sys-
tem. Therefore, in order to harvest the true benefit from a
system which employs dynamically reconfigurable hardware,
existing approaches pursue the best trade-off between hard-
ware acceleration, communication cost, dynamic reconfigu-
ration overhead, and system flexibility. In these existing ap-
proaches the emphasis is placed on identifying computation-
ally intensive tasks, also called kernels, and then maximiz-
ing performance by carrying over most of these tasks onto
reconfigurable hardware. In this scenario, software mostly
takes over the control dominated tasks. The performance
model of the reconfigurable hardware is mainly defined by

the degree of parallelism available in a given task and the
amount of reconfiguration and communication cost that will
be incurred. The performance model for software execution
is on the other hand static and does not become affected by
external factors.

We propose a new methodology, based on the Adaptive
Programming [1] technique, to evaluate and subsequently
perform the hardware and software partitioning for a SoC
that employs dynamically reconfigurable hardware and soft-
ware programmable cores. The main innovation of our tech-
nique lies primarily in the way we view and evaluate the
software partition. The basic philosophy is the following.
If the input to a program is not expected to change signifi-
cantly over different executions, one can exploit this by in-
troducing the self-adjusting property into the program such
that those computations which do not change across differ-
ent input sets can be reused instead of being re-executed.
This concept has been introduced for exploiting application
specific properties in purely software-based systems in or-
der to accelerate execution time by up to three orders of
magnitude for various applications [2, 3]. We aim to adapt
this paradigm into a mixed hardware and software design
flow for reconfigurable SoCs. Our goal is to develop a new
performance model and an associated evaluation metric to
identify application specific input behavior thereby differen-
tiating between various levels of performance across differ-
ent portions of software modules. This general performance
model is then embedded along with hardware performance
models into our proposed environment, which will yield a
highly flexible means to evaluate the performance impact of
different partitioning and allocation decisions. Our specific
contributions in this paper are as follows. We,

• developed quantitative evaluation metrics to evaluate
the reconfigurable system performance and to repre-
sent the performance of software in a SoC from an
application-specific, input-oriented point of view,

• constructed a performance model based on the above-
mentioned metric,

• introduced a design environment where the overlap-
ping design space between software and hardware can
be explored in greater detail, and

• presented a case study for a frame-based image pro-
cessing application on a embedded dynamically recon-
figurable SoC architecture.

The remainder of this paper is organized as follows. We
present a summary of related work in Section 2. Section 3
presents the overview of adaptive computing and its applica-
tion to our problem. In Section 4 we present our experimen-
tal platform and our results. We present detailed results on
the realization of a case study on our physical reconfigurable
SoC platform. Our conclusions are summarized in Section
5.

2. RELATED WORK
The VULCAN system [4] has been one of the first frame-

works to implement a complete codesign flow. The basic
principle of this framework is to start from a design spec-
ification based on a hardware description language, Hard-
wareC, and than move some parts of the design into soft-
ware. Another early approach to the partitioning problem
is the COSYMA framework [5]. Unlike most partitioning
frameworks, COSYMA starts with all the operations in soft-
ware, and moves those that do not satisfy performance con-
straints from the CPU to dedicated hardware. More recent
work [6], proposes a partitioning solution using Genetic Al-
gorithms. This approach starts with an all software descrip-
tion of the system in a high level language like C or C++.

Camposano and Brayton [7] have been the first to intro-
duce a new methodology for defining the Hardware (HW)
and the Software (SW) side of a system. They proposed a
partitioner driven by the closeness metrics, which provides
the designer with a measure on how efficient a solution could
be, one that implements two different components on the
same side, HW or SW. This technique was further improved
with a procedural partitioning [8, 9]. Vahid and Gajski [8]
proposed a set of closeness metrics for a functional parti-
tioning at the system level.

In the context of reconfigurable SoCs, most approaches
have focused on effective utilization of the dynamically re-
configurable hardware resources. Related work in this do-
main focus on various aspects of partitioning and context
scheduling. A system called NIMBLE was proposed for this
task [10]. As an alternative to conventional ASICs, a re-
configurable datapath has been used in this system. The
partitioning problem for architectures containing reconfig-
urable devices has different requirements. It demands a
two dimensional partitioning strategy, in both spatial and
temporal domains, while conventional architectures only in-
volve spatial partitioning. The partitioning engine has to
perform temporal partitioning as the FPGA can be recon-
figured at various stages of the program execution in order
to implement different functionalities. Dick and Jha [11]
proposed a real-time scheduler to be embedded into the co-
synthesis flow of reconfigurable distributed embedded sys-
tems. Noguera and Badira [12] proposed a design frame-
work for dynamically reconfigurable systems, introducing a
dynamic context scheduler and hw/sw partitioner. Banerjee
et al. [13] introduced a partitioning scheme that is aware of
the placement constraints during the context scheduling of
the partially reconfigurable datapath of the SoC.

Our approach makes its novel contribution by introduc-
ing a new optimization for the software partition. We have
adapted a software optimization, Adaptive Computing [1],

onto design for SoCs. Our associated performance met-
rics attempt to redefine the gray area between software and
hardware and we aim to explore opportunities for the soft-
ware domain with a new approach that has not been con-
sidered in SoC design before. Inevitably, these possibilities
impact the utilization of the dynamically reconfigurable re-
sources. Our work aims at providing the designer with the
necessary programming, profiling, and performance evalua-
tion tools to explore this new potential.

3. A NOVEL PERFORMANCE MODEL AND
EVALUATION FRAMEWORK FOR RE-
CONFIGURABLE SOCS

As dynamic reconfiguration has introduced more flexibil-
ity into the hardware side, the adaptive computation could
introduce different behavior into the software side. Com-
bining these two techniques together enables a new design
scenario in which hardware and software are moving closer
towards each other reshaping the overlapping gray space.

The adaptive computation concept which we utilize in
our realization of the software partitions allows to evalu-
ate the performance of software execution as a non-static
entity. Adaptive computing defines a relationship between
the input and output of an application with respect to the
input changes [1, 3]. An adaptive program responds to in-
put changes by updating its output, only re-evaluating those
portions of the program affected by the change. Adaptive
programming is particularly beneficial in situations where
input changes lead to relatively small changes in the output.
In some cases one cannot avoid a complete re-computation
of the output, but in many cases the results of the pre-
vious computation may be re-used to obtain the updated
output more quickly than a complete re-evaluation. Previ-
ous studies of purely software-based systems [14], indicated
encouraging performance improvements. For example, the
execution time of the main procedures used in computa-
tional geometry algorithms have been reduced by up to 250
times.

It is common to consider hardware components as fast
but not flexible while software solutions as flexible but slow.
Since the introduction of reconfigurable hardware platforms,
such as the FPGAs, the hardware domain has shifted into
the software domain; the possibility of implementing a re-
configurable architecture has increased the flexibility of the
hardware. In a similar spirit, we aim to show that with
an alternative description, we can also bring the software
domain closer into the hardware, if new software optimiza-
tion techniques are considered. The proposed approach aims
at moving the software domain into the hardware domain
whenever beneficial. In this scenario our goal is to accel-
erate the software execution as much as possible, create a
physical architecture able to execute the software specifi-
cation on a real embedded system, and finally create the
complete communication infrastructure that will allow the
software partition to exchange information with hardware.

In the following we first describe the general program-
ming framework and associated tool chain we have used for
the realization of the self-adjusting software modules. This
environment serves three primary purposes:

• Programming environment to develop and compile adap-
tive programs onto the target CPU core of the SoC,

• Profiler, enhanced by our novel metrics, called Adap-
tive Metrics, for evaluating the potential in tasks at
the function-level for performance improvement as a
result of transformation into the adaptive form,

• A support tool for generating guidance to the designer,
where the environment is enhanced by our performance
evaluation functions for the overall system.

3.1 Adaptive Computing for mixed Hardware
/ Software SoC Design Description

An adaptive computation essentially allows the program-
mer to change input values and update the result in a highly
efficient way. If due to the application characteristics there
are opportunities to perform incremental updates, this pro-
cess yields significant performance improvements. The li-
braries of the programming environment provide the meta-
function change to change the value of a modifiable and the
meta-function propagate to propagate these changes to the
output. The crucial issue is to support change propagation
efficiently. To do this, an adaptive program, as it evaluates,
also creates a record of the adaptive activity. It is helpful to
visualize this record as a dependency graph augmented with
additional information regarding the containment hierarchy
and the evaluation order of reads. In such a dependency
graph, each node represents a modifiable and each edge rep-
resents a read. To operate correctly, the change-propagation
algorithm needs to be aware of the containment hierarchy of
reads. This information is maintained by tagging each edge
and node with a time stamp. All expressions are evaluated
in a time range (ts; te) and time-stamps generated by the
expression are allocated sequentially within that range. The
base structure is an Augmented Dependency Graph (ADG),
basically a Directed Acyclic Graph (DAG), where each edge
has an associated reader and time stamp, and each node
has an associated value and time stamp. A node (and corre-
sponding modifiable) is an input if it has no incoming edges.
This data structure can be used for describing a system that
is going to change its behavior according to its inputs. The
system description that is the input to the proposed flow
does not need to be provided for a pure software system,
but may also be in the form of a high level hardware descrip-
tion language or a functional language. This might require
a transformation of the description that can support the
change propagation efficiently. In the following, we define
the set of Adaptive Metrics which will provide information
to the co-design process on how a software partition is going
to be affected by input changes.

3.2 Adaptive Metrics
Given an Augmented Dependency Graph and a set of

changed input modifiables, a change propagation algorithm
updates the ADG and the output by propagating changes
in the ADG. We define and embed our metrics as an exten-
sion to the change propagation algorithm proposed by Acar
et al. [1]. We define an edge or corresponding read as invali-
dated, if the source of the edge changes its value. We define
an edge as obsolete if it is contained within an invalidated
edge. At each run of the system under study it will be pos-
sible to identify the functions that are going to be affected
at each run. Creating a training environment it is going to
be possible to run the description under test with a known
training set. In this scenario, we will be able to define for
each function fj its corresponding ADG as ADGj = {nj , ej}

and a value m which represents the number of nodes mr

affected in a specific run computed over the training set.
Knowing the training set dimension ts, which is the num-
ber of tests used for defining the training environment, we
compute the adaptability value av for each run. This value
is defined as mr/|nj |, where |nj | is the cardinality of nodes
set for a functionality fj . Therefore, for each functionality
fj , we can define the percentage of adaptability as follows:

PIOVj =

Pts
k=1 avjk

ts
(1)

The range of the values for the function 1 is defined be-
tween 0 and 1. The boundary conditions are as follows: 0
will be used for a function that has the smallest number of
nodes affected by any input sets, while 1 is assigned to a
function that has the highest number of nodes that have to
be re-evaluated for each input. Therefore, it is possible to in-
troduce an ordering function based on the value computed
with 1, which we call the Partitioning Intensity Ordering
Value (PIOV). By considering the PIOV values of functions
it is possible to identify potential candidate functions in the
initial hardware and software partitions that would benefit
from a re-allocation. The two extremes 0 and 1 represent
the two well-defined cases; a component that was initially
placed in the software partition with a 0-PIOV should be
implemented in software. Similarly, within the initial hard-
ware partition, a functionality with a 1-PIOV is a part of
the system that is going to be intensively used during the
lifetime of the system. Therefore it is desirable to implement
it in hardware. The computed PIOV values can be used by
the designer to choose the best solution considering alterna-
tive allocations for the remaining tasks in either partition.
In order to facilitate this exploration we define generalized
performance metrics that describe the impact of alternative
combinations of adaptive software, non-adaptive software,
and hardware implementations. These performance metrics
will be described in the following section.

3.3 System-level Performance Evaluation Met-
rics

We utilized a test framework to compare the quality of al-
ternative solutions during the hardware/software partition-
ing. For a given system/application, Si (defined as a set
of functionality fj), we first consider two different software
solutions: a standard C description, SCi and an adaptive C
description, ACi. We use the following functions to repre-
sent various performance metrics.

• dimension: δ is used to compute the dimension, in
terms of CLBs, of a given functionality fj . ∀fj ∈ Si it
is possible to define the δ function as δ (fj) ∈ N . This
is a property used to describe the requirements for
the hardware implementation using the dynamically
reconfigurable resources.

• time: the τ function is defined as the sum of two other
functions ρ and λHW . Given a known input data set
X, the λHW function yields the computation time on
hardware of each function. The ρ function, on the
other hand, provides the reconfiguration time. The
reconfiguration cost is assumed to be a linear function
of the δ value, for the same functionality. Formally:

∀fj ∈ Si τ (fj) = ρ (δ (fj)) + λHW (fj(X)) (2)

Our set of metrics are completed with two additional func-
tions:

• Given a known input data set X, the λSW (fk) func-
tion represents the computation time of software real-
ization for a function fj .

• We define the throughput , TP , of a functionality fj

as a 3-tuple

TPj = 〈fj , g, t〉 (3)

where:

– fj is the generic functionality;

– g is the gender of the functionality, i.e. HW, SW,
RHW (Reconfigurable HW), or ACSW (Adaptive
Computing SW);

– t is the time unit to define the throughput.

In the proposed approach we decide to change our execu-
tion model to be able to justify the reconfiguration approach
using a model similar to the one proposed in [15]. The idea
is to iterate the execution of a functionality fj on a suffi-
cient amount of data until the required execution time is
sufficiently larger than the time needed to reconfigure a sec-
ond functionality fj′ . This can be described as the search
for the following X value:

λ (fj(X)) ≥ ρ (δ (fj′)) (4)

Therefore, although any system could plausibly be imple-
mented, some are going to use a large off-chip memory to
store all the necessary data, corresponding to the X value
defined in 4. Therefore the solution implementing task fj′ in
hardware through dynamic reconfiguration, might not be as
good as a description of the same system where it is imple-
mented in software. The later implementation could yield a
scenario where we will not need to introduce a large off-chip
memory to the system, because we do not have to hide any
reconfiguration time. In that case the following would hold:

ρ (δ (fj)) = ρ (δ (fj′)) = 0 (5)

In order to satisfy Equation 5, we need to derive the value
of X from Equation 4, which is the minimal amount of
data that has to be processed by both fj and fj′ . The
weak part of this solution is that the software implemen-
tation of the functionality that we consider to move from
hardware to software is slower in the software partition:
TPHW,j′,t >> TPSW,j′,t. This is exactly the case where an
adaptive description proves useful. Based on the evaluation
of TPadap,j′,t, we can achieve a scenario in which the im-
plementation of the system guarantees better performance
when subsequent inputs of fl differ only slightly. Further-
more, this configuration (utilizing adaptive software imple-
mentation for selected tasks) will yield comparable solution
to the reconfigurable scenario, without any additional off-
chip memory.

Our generalized optimization framework that also em-
braces possibilities for software partitions and the associ-
ated evaluation metrics described above enable us to carry
out this exploration and identify the optimal configuration
for a system Si.

4. EXPERIMENTAL RESULTS
We will first present results to demonstrate the applicabil-

ity of the adaptive computation to extend the design space
for a SoC. The performance results of our framework, where
both the SCi and the ACi descriptions are executed on the
PowerPC are shown in Table 1.

Table 1: Test of the SCi and the ACi on a PowerPC.

ai SCi ACi init ACi Speedup
s s

quick-hull 0.509 2.443 0.00257 206
diameter 0.554 2.521 0.00265 208
reverse 0.117 0.404 0.0000733 1596

minimum 0.118 0.361 0.000138 855
ultimate 0.759 3.006 0.00676 112

FIR 0.148 0.416 0.0000594 2491

The first column lists our benchmarks. The first set of
benchmarks presented, quick-hull, diameter, reverse, mini-
mum, and ultimate, are classical combinatorial optimization
problems, while the last one is the well known FIR algorithm
from the the Digital Image Processing domain. The second
column presents the computation time in seconds for the
baseline software implementation, SCi. The SCi is a value
that can be considered as an invariant through different runs
of the same algorithm. This is not the same behavior that
we will achieve using an adaptive description of the bench-
mark ai. With an adaptive description we have to first con-
sider a phase of initialization, this value is presented in the
third column ACi init. For the subsequent runs of the same
algorithm we have the computation time in seconds, pre-
sented in the fourth column ACi. The last column presents
the speedup achievable using the adaptive computation in-
stead of the classical implementation SCi. We observe that
significant speedups can be achieved. For instance for the
FIR function three orders of magnitude speedup is observed.
This function is one of the major components of the com-
plete application that we will present in the following.

Next, we demonstrate a complete example from the Dig-
ital Image Processing area. Several applications in this do-
main are characterized by data intensive kernels that involve
a large number of repetitive operations on the input images.
As we argued in Section 3, adaptive programming is useful
in situations where input changes lead to relatively small
changes in the output. This can lead us to consider two op-
tions. First, an implementation where all compute intensive
tasks are mapped onto the reconfigurable hardware. How-
ever, this requires partial dynamic reconfiguration and the
consequences of this can overshadow the benefits achieved
from hardware acceleration. Second, some tasks initially
deemed suitable for hardware are re-allocated after the eval-
uation guided by our metrics. The scenario chosen to vali-
date the proposed approach is the edge detection problem,
computed on sequential frames, e.g. for a motion detection
application [16], where the changes between two consecutive
inputs, frames, are very small by nature of the application.

A complete example has been realized using the edge de-
tection algorithm to define the system Si. The edge de-
tector we have used in our experiments is the canny edge
detector. The version of the algorithm used to test the pro-

posed methodology, as shown in Figure 1 is composed of
four main steps: image smoothing (fa), gradient compu-
tation (fb), non-maximum suppression (fc) and finally the
hysteresis threshold (fd).

Figure 1: Canny edge detector execution model.

The image smoothing (FIR) phase is necessary to re-
move the noise from the image. The image gradient,
computed by applying the filter function with a window-
approach, is used to highlight regions with high spatial deriva-
tives. Next, the intensity value image and the direction value
image, are computed during the non-maximum suppres-
sion stage. At this point we obtain an image with approxi-
mate edges detected, which are often corrupted by the pres-
ence of false-edges. In order to delete these non-edges the
gradient array is now further reduced by hysteresis.

The application has been described in C and we first gen-
erated an initial partitioning. After a profiling phase of the
canny edge detector, based on the classical four-function
partitioning computed on several input images, we realize
that the most computationally expensive parts of the sys-
tem are the image smoothing filter (FIR), the image gradient
and the hysteresis. We have first implemented these func-
tions as IP-Cores in VHDL and they have been plugged into
the self reconfigurable architecture. The resulting system is
composed of four tasks. The distribution of the application
functions into these tasks is depicted in Table 2. The task
f1 contains the fixed side, i.e., the PowerPC core and all
the interface infrastructures as well as the function fc (non-
maximum suppression). The other three tasks correspond
to one IP core implemented with reconfigurable hardware.
The resource requirements of these IP cores are shown in
Table 3.

Table 2: The initial task partitioning.

Tasks Application Functions

f1 Fixed Side, non-maximum suppression fc

f2 image smoothing (FIR) fa

f3 gradient fb

f4 hysteresis fd

Table 3: Canny edge detector VHDL occupation.

task Module Occupied Slices Percentage

f1 Fixed Side 2662 54
f2 image smoothing (FIR) 245 4
f3 gradient 2168 44
f4 hysteresis 5343 108

The data shown in Table 3 has been obtained after imple-
menting the IP cores on our target architecture on an xcI-
Ivp7 Xilinx FPGA. The resource requirement of f4 clearly
indicates that it cannot be realized on the available hardware
of this system. Therefore, it needs to be moved to the soft-
ware partition. As a result, f1 is extended to support both
fc (non-maximum suppression) and fd (hysteresis). This
move does not incur any additional overhead for the realiza-
tion of task f1. Task f1 already contained one application
function (fc). Therefore, necessary computational resources
(a PowerPC core) and communication components to cor-
rectly interface the software functions with the IP cores have
already been created and accounted for. The newly added
application function fd will also utilize this existing infras-
tructure.

At this point, we can describe the system, Si, as: Si =
{f1, f2, f3} where on f1 we have the software execution of
the non-maximum suppression and the hysteresis threshold
functions. With this organization, hardware reconfiguration
has to be taken into account because the fixed portion of
the architecture, f1, along with the two IP-Cores, the FIR
Filter, f2, and the image gradient function, f3, are not going
to fit into the available reconfigurable hardware resources.
In order to have an efficient implementation using partial
dynamic reconfiguration, we have to process a certain mini-
mum amount of data to justify the reconfiguration between
the FIR and image gradient cores.

We evaluate the reconfiguration cost metric by exploiting
the proportional relationship between the δ function and
reconfiguration time for a task. For f3 this yields a large
reconfiguration cost of 368ms. The only acceptable solu-
tion to keeping both f2 and f3 on reconfigurable hardware
would be to let f2 process a large amount of data (a large
value for X described in Equation 4) such that the reconfig-
uration latency can be hidden with computation. However,
this would need a large off-chip memory, since the available
memory (32Kb) resources are not enough. In order to man-
age this scarce hardware resource optimally, we first exam-
ine the throughput metrics of the two tasks competing for
the reconfigurable hardware resources, TP2 = 〈f2, SW, s〉
and TP3 = 〈f3, SW, s〉. These throughput values have been
computed using a software version running on the Pow-
erPC embedded on the xc2vp7 FPGA. The resulting val-
ues are shown in Table 4. At this point our new metric
for evaluating the performance of software will prove cru-
cial. If we were to consider the traditional software im-
plementation of f2, it would be much slower than hardware:
λSW (f2) >> λHW (f2). However, with an adaptive descrip-
tion λadap (f2), we can achieve an attractive alternative solu-
tion depending on the input behavior. In order to ensure this
potential gain we verify that 0 < PIOV2 << PIOV3 < 1.
For the test inputs applied this relationship indeed holds.
Therefore it is beneficial to move f2 from hardware descrip-
tion to the adaptive software description. For many applica-
tions of the edge detection, the input is a series of snapshots
from a relatively static scenery. As shown in Table 1 for
such cases the FIR functionality can be effectively acceler-
ated by taking advantage of the application’s nature. This
data is consistent with the low PIOV value of f2, indicating
a high speedup in the computation if implemented using the
adaptive description. This observation drives our decision
to move the FIR function into adaptive software, thereby
eliminating the need for dynamic reconfiguration. The per-

formance of the resulting system is superior to the one im-
plementing both f2 and f3 on reconfigurable hardware with
dynamic context switching. Furthermore, no large off-chip
memory should be required.

Table 4: Throughput comparison between tasks f2

and f3.

fi TPi = 〈fi, SW, s〉
2 17 kbit/s
3 33 kbit/s

In summary, a combined metric evaluation that takes a
general performance model for both hardware and software
into account will be crucial in guiding the design space ex-
ploration for dynamically reconfigurable SoCs as shown in
this case study. Reconfigurable SoCs are particularly pow-
erful platforms for image and video processing and other
multimedia applications. These domains provide essential
services for many emerging embedded systems. Numerous
applications in these domains present an input behavior,
where consecutive inputs will differ minimally. Motion de-
tection, feature tracking, processing on continous streams
are some applications to this end. This is an area with
plenty of opportunities for our proposed flow.

5. CONCLUSIONS
Our proposed methodology aims at reducing the gap be-

tween the hardware and the software worlds during the sys-
tem partitioning phase. Dynamic reconfiguration has al-
ready reduced this gap to some degree, while introducing
other challenges. Adaptive computing can be used to re-
duce this gap even further. In this work we have demon-
strated that adaptive computing can be an effective tool to
explore a richer design space at the intersection of hardware
and software during co-design of reconfigurable SoCs. We
presented the necessary evaluation metrics to support the
realization of this paradigm during co-design. We have con-
structed an extensive development platform to demonstrate
the benefits of our proposed methodology. Our setup com-
bines a programming environment, profiling and evaluation
tools and a real SoC containing a software programmable
CPU and dynamically reconfigurable hardware. We aim to
extend the proposed work towards creating a specific soft-
ware environment that can be used with the operating sys-
tem running on the FPGA. Building our development and
experimental setup has been a colossal effort, bringing to-
gether the MLTon-based flow, physical mapping of the soft-
ware and hardware onto the adopted reconfigurable archi-
tecture. This setup has been successful in proving the valid-
ity of our methodology. However, the final implementation
needs further improvements in mainly two aspects: the de-
velopment of a simulation framework for the entire system
under development and analysis of the communication in-
terface/infrastructure used to allow the hardware and the
software sides to interact.

6. REFERENCES
[1] Umut A. Acar, Guy E. Blelloch, and Robert Harper.

Adaptive functional programming. In POPL, pages
247–259, 2002.

[2] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L.
Vittes, and Shan Leung Maverick Woo. Dynamizing static
algorithms, with applications to dynamic trees and history
independence. In SODA, pages 531–540, 2004.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper.
Selective memoization. In POPL, pages 14–25, 2003.

[4] R. K. Gupta and G. De Micheli. Hardware/software
cosynthesis for digital systems. In IEEE Design & Test of
Computers, pages 29–41, 1993.

[5] J. Henkel R. Ernst and T. Benner. Hardware/software
cosynthesis for microcontrollers. In IEEE Design & Test of
Computers, pages 64–75, 1993.

[6] Z. Zhuang Y. Zou and H. Chen. Hw-sw partitioning based
on genetic algorithm. In Proceedings of the 2004 IEEE
Congress on Evolutionary Computation, pages 628–633.
IEEE Press, 2004.

[7] R. Camposano and R. Brayton. Partitioning before logic
synthesis. In Proceedings of the International Conference
on Computer-Aided Design, 1987.

[8] F. Vahid and D. D. Gajski. Closeness metrics for
system-level functional partitioning.

[9] F. Vahid and D. D. Gajski. Incremental hardware estimatin
during hardware/software functional partitioning. In IEEE
Trans. VLSI Systems, pages 459–464, 1995.

[10] E. Darnell R. E. Harr U. Kurkure Y. Li, T. Callahan and
J. Stockwood. Hardware/software codesign of embedded
reconfigurable architectures. In Proceedings of the 37th
Conference on Design Automation, pages 507–512.
ACM/IEEE, 2000.

[11] Robert P. Dick and Niraj K. Jha. Cords: hardware-software
co-synthesis of reconfigurable real-time distributed
embedded systems. In ICCAD ’98: Proceedings of the 1998
IEEE/ACM international conference on Computer-aided
design, pages 62–67. ACM Press, 1998.

[12] Juanjo Noguera and Rosa M. Badia. Hw/sw codesign
techniques for dynamically reconfigurable architectures.
IEEE Transactions on Very Large Scale Integration
Systems, 10(4):399–415, 2002.

[13] Sudarshan Banerjee, Elaheh Bozorgzadeh, and Nikil Dutt.
Physically-aware hw-sw partitioning for reconfigurable
architectures with partial dynamic reconfiguration. In DAC
’05: Proceedings of the 42nd annual conference on Design
automation, pages 335–340. ACM Press, 2005.

[14] Umut A. Acar. Self-adjusting computation. In PhD Thesis,
School of Computer Science, Carnegie Mellon University,
May 2005.

[15] R. Maestra, F.J. Kurdahi, M. Fernandez, R. Hermida,
N. Bagherzadeh, and H. Singh. A framework for
reconfigurable computing: Task scheduling and context
management. IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, 9(6):858–873, December 2001.

[16] Chao-Chee Ku and Ren-Kuan Liang. Accurate motion
detection and sawtooth artifacts remove video processing
engine for lcd tv. In IEEE Transaction on Consumer
Electronics, volume 50, pages 1194–1201, November 2004.

