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Abstract

We present a Standard ML library for writing programs that automatically adjust to changes
to their data. The library combines modifiable references and memoization to achieve efficient
updates. We describe an implementation of the library and apply it to the problem of maintaining
the convex hull of a dynamically changing set of points. Our experiments show that the overhead
of the library is small, and that self-adjusting programs can adjust to small changes three-orders
of magnitude faster than recomputing from scratch. The implementation relies on invariants that
could be enforced by a modal type system. We show, using an existing language, abstract interfaces
for modifiable references and for memoization that ensure the same safety properties without the
use of modal types. The interface for memoization, however, does not scale well, suggesting a
language-based approach to be preferable after all.

Keywords: incremental computation, selective memoization, change propagation, computational
geometry, convex hulls, quickhull

In many application domains, such as simulations systems, robotics, lan-
guage environments, it is important for computations to adjust to external
changes to their data. This ability can enable a whole new class of com-
putations that has not been previously possible [7,8], and enable performing
complex computations in real-time by taking advantage of the fact that most
changes are small.

The problem of processing a small change to the input of a program
efficiently has been studied extensively in the programming-languages com-
munity. This is known as incremental computation. The goal has been to
devise general-purpose techniques for writing programs that can adjust to
changes. The two key techniques are dynamic dependence graphs and mem-
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oization. Dynamic dependence graphs (DDGs) [2,3] generalize static depen-
dence graphs [10], by enabling change propagation to update the dependences.
Memoization [20,14,13,3] relies on remembering the results of function calls
and re-using them when possible.

Although both of these techniques are general purpose, they yield efficient
updates only for certain kinds of input changes and certain kinds of compu-
tations. In previous work [2,3], we point out the limitations of each technique
and claim that they can be combined to improve performance substantially.
In this paper, we present an SML library that combines DDGs and memo-
ization. Using the library, the programmer can transform an ordinary purely
functional program into a self-adjusting program by making small changes to
the code.

Self-adjusting programs adjust to any external change whatsoever to their
data. As a self-adjusting program executes, the run-time system builds a dy-
namic dependence graph (or DDG)) that represents the relationship between
computation and data. The nodes represent data and the edges represent the
relationship between them. Each edge is tagged with a closure that deter-
mines how its destination is computed from its source. After a self-adjusting
program completes its execution, the user can change any computation data
(e.g., the inputs) and update the output by performing a change propagation.
This change-and-propagate step can be repeated. The change-propagation
algorithm updates the computation by mimicking a from-scratch execution
by re-executing the closures of edges whose sources have changed. When
re-executing a closure, the algorithm can re-use, via memoization, edges and
nodes that the previous execution of that closure created. When an edge is re-
executed, the algorithm discards the unused edges and nodes belonging to the
prior execution, because these elements no longer belong to the computation.

To demonstrate the effectiveness of our approach, we consider an appli-
cation from computational geometry [9]. We implement the quick hull algo-
rithm for computing convex hulls and perform an experimental evaluation.
Our experiments show that the overhead the library is small and that the
self-adjusting programs can adjust to changes significantly faster than recom-
puting from scratch. For quick-hull algorithm, our experiments show a near
linear-time gap between change propagation and recomputing from scratch.
For the input sizes we consider, change propagation can be three orders of
magnitude faster than recomputing from scratch.
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1 The Library

We present a library that combines modifiable references and memoization.
The library ensures safe use of modifiable references but it does not ensure
safe use of memoization primitives. In Section 4, we present combinators that
ensure safe use of memoization. In principle, the combinators for memoization
can be incorporated with the library considered in this section. We do not do
this, however, because of scalability issues discussed in Section 4.

We first present a high-level description of the underlying model (a full
description is out of the scope of this paper). We then describe the interface
for the library and present the full code for the core of the implementation.

1.1 The underlying model

Change propagation must detect changes to data so that the computations
that process those data can be re-executed. The frames of reference with
respect to which changes are tracked are called modifiable references. We will
often abbreviate and refer to modifiable references as modifiables. A modifiable
can be thought of as a memory location with a fixed address but variable
contents. We call computations that are guaranteed to yield fixed results stable
and other computations—those that may produce variable data—changeable.
The result of each changeable computation is recorded in a modifiable, and
only changeable computations may read the contents of modifiables.

During propagation, when there are pending changes, the implementation
“fast-forwards” to the earliest affected read operation and begins re-executing
the corresponding changeable computation from that point on. The result of
this computation ultimately writes to some modifiable r. Depending on the
original value of r, a change (to the value contained in r) might get recorded.
Notice that r itself, i.e., the address of the location that contains the poten-
tially changed value, stays fixed.

Re-executing the entire remainder of a changeable computation starting
at an affected read can be very inefficient as significant portions of it might
not truly depend on the changed value. We use memoization of computations
to detect such situations dynamically: when a function is called with the
exact same arguments as during the previous execution, then the part of
the computation corresponding to this function call can be re-used. However,
since a memoized computation might contain read operations that are affected
by pending changes, one must propagate these changes into the result of a
successful memo lookup.

Thus, there is a form of duality between change propagation and memo-
ization: change propagation takes a part of a computation to be skipped and
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Fig. 1. Intervals of alternating re-use and re-execution

“carves out” the sub-intervals that need to be re-executed. Memoization takes
a part of a computation to be re-executed and “carves out” intervals to be
skipped. A simple example for this is shown in Figure 1: Change propagation
tries to re-use as much as possible of the overall computation (interval A) but
has to re-execute two of its parts (intervals B and C), because these parts
are controlled by affected read operations. During the re-execution of B a
re-usable part (interval D) is discovered via memoization. Similarly, E can be
re-used during the re-execution of C. However, there is a change that affects a
read operation within D which forces the re-execution of sub-interval F which
is nested within D.

By synergistically combining memoization and change propagation into
adaptive memoization, we can also relax the re-use rule for memoization.
This relaxation enables re-using a computation even when the values that
the computation depends on differ. Consider a function call f(X, y) where
X represents all arguments except y. If we arrange for y to be read from a
modifiable rX (where rX itself depends only on X) instead of being passed
as an argument, then the value of y would not figure into the memo-lookup.
Instead, a previous execution of the function call—even for a different value of
y—can be reused and adjusted to the new value of y by change propagation.
Note that this differs from partial evaluation, because change propagation will
take advantage of the similarity between the old and the new values for y.
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signature BOXED VALUE = sig

type index

type α t

val init: unit → unit

val new: α → α t

val eq: α t * α t → bool

val valueOf: α t → α

val indexOf: α t → index

val fromInt: int → int t

end

structure Box: BOXED VALUE = struct ... end

signature COMBINATORS = sig

eqtype α modref

type α cc

val modref: α cc → α modref

val write: (α * α → bool) → α → α cc

val read: β modref * (β → α cc) → α cc

val mkLift: (α * α → bool) →

(Box.index list * α) → (α modref → β) → β

val mkLiftCC: ((α * α → bool) * (β * β → bool)) →

(Box.index list * α) → (α modref → β cc) → β cc

(** Meta Operations **)

val init: unit → unit

val change: (α * α → bool) → α modref → α → unit

val deref: α modref → α

val propagate: unit → unit

end

structure C: COMBINATORS = struct ... end

Fig. 2. Signatures for boxed values and combinators.

1.2 The library interface

Figure 2 shows the interface to the library.

The BOXED VALUE module supplies functions for operating on boxed val-
ues. We used boxes (or tagged values) to support constant-time equality
tests, which are necessary for efficient memoization [3]. The new function cre-
ates a boxed value by associating a unique integer index with a given value.
The eq function compares two boxed values by comparing their indices. The
valueOf and indexOf functions return the value and the index of a boxed
value, respectively. The boxed value module may be extended with functions
for creating boxed values for a type. Such type-specific functions must be con-
sistent with the equality of the underlying types. For example, the function
fromInt may assign the index i to integer i.
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The COMBINATORS module defines modifiable references and changeable
computations. Every execution of a changeable computation of type α cc

starts with the creation of a fresh modifiable of type α modref. The modifiable
is written at the end of the computation. For the duration of the execution,
the reference never becomes explicit. Instead, it is carried “behind the scenes”
in a way that is strongly reminiscent of a monadic computation [6]. Any
non-trivial changeable computation reads one or more other modifiables and
performs calculations based on the values read.

Values of type α cc representing changeable computations are constructed
using write, read, and mkLiftCC. The modref function executes a given com-
putation on a freshly generated modifiable before returning that modifiable
as its result. The write function creates a trivial computation which merely
writes the given value into the underlying modifiable. To avoid unnecessary
propagation, old and new values are compared for equality at the time of
write using the equality function provided. The read combinator, which we
will often render as ��→ in infix notation, takes an existing modifiable reference
together with a receiver for the value read. The result of the read combinator
is a computation that encompasses the process of reading from the modifiable,
a calculation that is based on the resulting value, and a continuation repre-
sented by another changeable computation. Calculation and continuation are
given by body and result of the receiver.

Functions mkLift and mkLiftCC handle adaptive memoization, i.e., memo-
ization based on partially matching function arguments. With ordinary mem-
oization, a memo table lookup for a function call will fail whenever there is
no precise match for the entire argument list. As explained above, the idea
behind adaptive memoization is to distinguish between strict and non-strict
arguments and base memoization on strict arguments only. By storing com-
putations (as opposed to mere return values) in the memo table, a successful
lookup can then be adjusted to any changes in non-strict arguments using
the change-propagation machinery. Since change propagation relies on read

operations on modifiables, the memoized function has to access its non-strict
arguments via such modifiables. The memo table, indexed by just the strict
part of the original argument list, remembers the modifiables set aside for
non-strict arguments as well as the memoized computation.

Given the strict part of the argument list, a lift operation maps a function
of type α modref → β to a function of type α → β where α is the type of
the non-strict argument. 3 Our mkLift and mkLiftCC combinators create lift
operations for ordinary and changeable computations from appropriately cho-

3 In the actual library, arguments appear in a different order to make idiomatic usage of
the interface by actual code more convenient.
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sen equality predicates for the types involved. The strict part of the argument
list is represented by an index list, assuming a 1− 1 mapping between values
and indices, e.g., the one provided by the BOXED VALUE interface. Not shown
here, our library also contains mkLift2, mkLiftCC2, mkLift3, mkLiftCC3 and
so on to support more than one non-strict argument.

When its memo table lookup fails, a lifted function creates fresh modifi-
ables containing its non-strict arguments, executes its body, and stores both
the computation and the modifiables into the memo table. Computations are
memoized by recording their return value and a representation of their dy-
namic dependence graph (DDG) using time stamps [2]. A successful memo
lookup finds modifiables and a computation. The lifted function then writes
its current non-strict arguments into their respective modifiables, and lets
change propagation adjust the computation to the resulting changes.

It is the responsibility of the programmer to ensure that all applications
of lift functions specify the strict and non-strict variables accurately. For
correctness, it is required that all free variables of a memoized expression are
specified as strict or non-strict. The classification of a variable as strict or non-
strict does not affect correctness but just performance. In previous work [3],
we proposed selective memoization techniques for memoizing expressions in a
safe manner based on branches.

The COMBINATORS module also supplies meta operations for inspecting and
changing the values stored in modifiables and performing change propaga-
tion. The change function is similar to write function. It changes the un-
derlying value of the modifiable to a new value—this is implemented as a
side effect. The propagate function runs the change-propagation algorithm.
Change propagation updates a computation based on the changes issued since
the last execution or the last change propagation. The meta operations should
only be used at the top level—the library guarantees correct behavior only in
the cases that meta operations are not used inside the program.

1.3 Implementation

Appendix A gives the code for an implementation of the library. The im-
plementation consists of the following modules: boxes, combinators, memo
tables, modifiables, order-maintenance data structure, and priority queues.
We give the complete code for the core part of the library consisting of the
modifiables, and the combinators.
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2 Self-Adjusting Programming

This section describes how to write self-adjusting programs using the library
presented in Section 1. As examples, we consider a function for filtering el-
ements out of a list and a function for combining the values in a list with a
binary operator. Section 3 describes how to implement a self-adjusting version
of the quick-hull algorithm using these functions.

2.1 Modifiable Lists

Figure 3 shows signature and code for a module implementing modifiable lists.
Modifiable lists are similar to ordinary lists—the difference is that the tail of
a modifiable lists cell is stored inside of a modifiable. Modifiable lists enable
the user to change their contents by changing the values stored in the tail
elements through the change meta operation.

The modifiable list library provides the functions write, lengthLessThan,
eq, filter, and combine. The eq function tests shallow equality of the two
lists. The write function specializes the write function of the COMBINATOR

module for modifiable lists. The lengthLessThan function tests if the list
is shorter than the given value. This function is straightforward to imple-
ment; we therefore omit the code. The filter and the combine functions are
discussed in the following sections.

2.2 The Transformation

The programmer can transform an ordinary program into a self-adjusting
program in two steps. The first step makes the program adaptive by placing
values into modifiables; this is described in detail in previous work [2]. The
second step adds memoization. To maximize result reuse, memoization should
be applied at as fine a granularity as possible. Performance, however, suffers if
many memoized computations share the same key. The programmer can avoid
this problem by making sure that each memoized function call is uniquely
identified by the values of its strict arguments.

As an example, consider the filter function. Figure 4 shows the code
for ordinary filter (left) and its self-adjusting version (right). The function
takes a test function f and a list l and returns the list of the elements for
which f is true. The first step of the transformation involves changing the
input list to a modifiable list and placing modref, read, write functions ap-
propriately [2]. In the second step, we memoize filter by considering its two
branches. Since the NIL branch performs trivial work it need not be memo-
ized. For the CONS branch we create a lift operator using mkLift and memoize
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signature MOD LIST = sig

datatype α modcell = NIL | CONS of (α * α modcell C.modref)

type α t = α modcell C.modref

val eq: α Box.t modcell * α Box.t modcell → bool

val write: α Box.t modcell → α Box.t modcell C.cc

val lengthLessThan : int → (α t) → bool C.modref

val filter: (α Box.t → bool) → α Box.t t → (α Box.t t)

val combine:(α Box.t*α Box.t→α Box.t)→(α Box.t t→α Box.t C.modref

end

structure ML:MOD LIST = struct

datatype α modcell = NIL | CONS of (α * α modcell C.modref)

type α t = α modcell C.modref

infix ��→ val op ��→ = C.read

fun eq (a,b) =

case (a,b) of

(NIL,NIL) ⇒ true

| (CONS(ha,ta), CONS(hb,tb)) ⇒ Box.eq(ha,hb) andalso (ta=tb)

| ⇒ false

fun write c = C.write eq c

fun lengthLessThan n l = ...

fun filter f l = ... (* See Figure 4 *)

fun combine binOp l = ... (* See Figure 5 *)

end

Fig. 3. The signature for modifiable lists and an implementation.

filter: (α Box.t → bool) →

(α Box.t list) →

(α Box.t list)

fun filter f l =

let

fun filterM c =

case c of

nil ⇒ nil

| h::t ⇒

if (f h) then

(CONS(h,filterM t))

else filterM t

in filterM l end

filter: (α Box.t → bool) → (α Box.t ML.t) →

(α Box.t list)

fun filter f l =

let

val lift = C.mkLift ML.eq

fun filterM c =

case c of

ML.NIL ⇒ ML.write ML.NIL

| ML.CONS(h,t) ⇒

t ��→ (fn ct ⇒ lift ([Box.indexOf h],ct) (fn t ⇒

if (f h) then

ML.write (ML.CONS(h,C.modref (t ��→ filterM)))

else t ��→ filterM))

in C.modref (l ��→ filterM) end

Fig. 4. The self-adjusting filter function.

the branch, treating h as strict and the contents of t (bound to ct) as non-
strict. Since the lift operator places ct into another modifiable, an extra read

is required.
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2.3 Program Stability

Even though any purely functional program can be methodically transformed
into a self-adjusting program, not all such programs perform efficiently under
changes. The performance is determined by how stable the program is under
that change.

In other work [1,4], we formalize stability and prove stability bounds for
a number of algorithms. A precise treatment of stability is beyond the scope
of this paper, but we would like to give some intuition. The stability of a
program can be determined by comparing the executions of the program on
inputs before and after the change takes place. An easy stability criterion
is to look at the difference between all data computed by two executions—a
large difference means that the program is not stable. A more precise analysis
is based on computing the distance between the (execution) traces instead of
just data. The trace is defined as the set of executed lift functions tagged with
their strict arguments. The distance between two traces is total execution time
of the function calls in the symmetric set difference of the two traces—we refer
to such function calls as affected. A call is affected if there isn’t a call in the
other trace that has the same strict arguments. Under certain conditions, it
can be shown that the trace distance and the time for adjusting to a change
are equal [1]. For example, it can be shown that the filter function adjusts
to a deletion/insertion in constant time by showing that the trace distance
under this change is constant.

As an example, consider summing the values in a list. The straightfor-
ward technique of traversing the list while maintaining the partial sum of all
elements visited is not stable, because deleting/inserting a key will change all
the partial sums that include that key. We now provide a stable solution to
this problem in a more general setting.

A fundamental primitive for computing with lists is a combine (a.k.a.,
fold or reduce) primitive that takes a binary operation and a list, and com-
bines the values in the list by applying the binary operation. By choosing
the binary operation to be applied, combine can perform various operations
on lists such as computing the sum of all elements, finding the minimum or
maximum element, or finding the longest increasing sequence in a list. To
provide a stable solution to this problem, we adopt a randomized approach.
The idea is to halve the input list into smaller and smaller lists until the list is
a singleton. To halve a list, choose a randomly selected subset of the list and
delete the chosen elements from the list. Deleting an element incorporates its
value to the closest surviving element to the left. Note that a deterministic
approach, where, for example, every other element is deleted is not stable,
because deleting/inserting an element can cause a large change by shifting the
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fun combine binOp l =

let fun halfList l =

let val hash = Hash.new ()

fun pairEqual ((b1,c1),(b2,c2)) = Box.eq(b1,b2) andalso ML.eq(c1,c2)

val writePair = C.write’ pairEqual

val lift = C.mkLiftCC (ML.eq,ML.eq)

fun half c =

let fun sumRun(v,ML.NIL) = writePair (v,c)

| sumRun(v,ML.CONS(h,t)) =

t ��→ (fn ct ⇒

if hash(Box.indexOf h) = 0 then writePair (binOp(v,h),ct)

else sumRun(binOp(v,h),ct))

in case c of

ML.NIL ⇒ ML.write ML.NIL

| ML.CONS(h,t) ⇒ t ��→ (fn ct ⇒

lift ([Box.indexOf h],ct) (fn t ⇒ t ��→ (fn ct ⇒

let val p = C.modref (sumRun (h,ct))

in p ��→ (fn (v,ct’) ⇒ ML.write (ML.CONS(v, C.modref (half ct’))))

end)))

end

in C.modref (l ��→ (fn c ⇒ half c)) end

fun comb l = ML.lengthLessThan 2 l ��→ (fn b ⇒

if b then l ��→ (fn c ⇒

case c of ML.NIL ⇒ raise EmptyList

| ML.CONS(h, ) ⇒ C.write h)

else comb (halfList l))

in C.modref (comb l) end

Fig. 5. Self-adjusting list combine.

positions of many elements by one. Figure 5 shows the code for the approach.
We assume that the given binary operator is associative—commutativity is
not required. For randomization, we use a random hash function [22] that
returns zero or one with probability a half.

As an example, Figure 6 shows an execution of combine that computes
the sum of the values in the lists [(a,0), (b,8), (c,5), (d,3), (e,2), (g,9), (h,6),
(i,4), (j,1)] and [(a,0), (b,8), (c,5), (d,3), (e,2), (f,7), (g,9), (h,6), (i,4), (j,1)],
which differ by the key f, with value 7. The keys are a, . . . , k. The second
execution can be obtained from the first by inserting f and performing a
change propagation. During change propagation, only the shaded cells will be
recomputed. Based on this intuition and by establishing an isomorphism to
Skip List [19], it can be shown that a deletion/insertion requires logarithmic
time in the size of the list [1].
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Fig. 6. The lists at each round before and after inserting the key f with value 7.

3 Self-Adjusting Quick Hull

The convex hull of a set of points is the smallest polygon enclosing these
points. We describe a self-adjusting version of the quick hull algorithm for
computing convex hulls and present an experimental evaluation. Convex hulls
have been studied both in the ordinary and the dynamic (incremental) set-
tings [12,18,17,16,9,5].

Figure 8 shows the code for the quick hull algorithm, as given by the trans-
formation technique described in Section 2.2. As is standard in the literature,
we only compute the upper hull—the same algorithm can compute the com-
plete hull by using a slightly different distance function. The code relies on
modifiable lists an module that supplies the geometric primitives specified by
the POINT signature—it is straightforward to give an implementation for this
signature.

Figure 7 illustrates how the algorithms works. The algorithm first com-
putes the leftmost (min) and the rightmost (max) points in the input, and
calls split with the line (min,max). The split function takes the line
(p1,p2) and filters out the points below that line. The function then finds
the point, max, that is farthest away from the line and performs two recursive
calls with the lines (p1,max) and (max,p2), respectively. The algorithm uses
the combine function to find the leftmost and the rightmost points, as well as
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− Filter Out−
p1 p2
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max

Recursive calls

Upper Hull

Final Upper Hall

Fig. 7. The Quick-Hull Algorithm

the point farthest away from a line.

To evaluate the effectiveness our approach, we measure the following quan-
tities for a given input I.

• Time for running the non-self-adjusting quick hull, denoted Tverifier(I).

• Time for running the self-adjusting quick hull, TinitialRun(I).

• Average time for a deletion/insertion, denoted TavgDelIns(I): This quantity
is measured by running a delete-propagate-insert-propagate step for each
element and computing the average time. Each step deletes an element, runs
change propagation, inserts the element back, and runs change propagation.

Figure 9 shows the timings for input sizes up to to 200K (i.e., 200000). The
inputs are generated randomly. An input of size n is produced by randomly
selecting n points from a 10n × 10n square. The experiments are run on a
2.7GHz Power Mac G5 with 4GB of memory; the machine runs Mac OS X.
We use the MLton [21] compiler with option ram-slop 1. This option directs
the compiler to use all the available memory available on the system (MLton,
however, can only allocate a maximum of two Gigabytes).

The experiments show that the overhead TinitialRun(I)/Tverifier(I) of our li-
brary is no more than six, including time for garbage collection. When the
time for garbage collection is excluded the overhead is about a factor of two.
During initial run, the ratio of garbage-collection time to the total execution
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signature POINT =

sig

type t

val toLeft : t * t → bool

val toRight : t * t → bool

val leftTurn : t * t * t → bool

val distToLine: t * t → t → real

val fromCoordinates : real*real → t

val toCoordinates : t → real*real

end

structure P: POINT = struct ... end

structure QuickHull =

struct

structure C = Comb

infix ��→ val op ��→ = C.read

fun split (rp1, rp2, ps, hull) =

let val lift = C.mkLiftCC2 (ML.eq,ML.eq,ML.eq)

fun splitM (p1, p2, ps, hull) =

let fun select p =

P.distToLine (Box.valueOf p1,Box.valueOf p2) (Box.valueOf p) > 0.0

val l = ML.filter select ps

in l ��→ (fn cl ⇒

case cl of

ML.NIL ⇒ ML.write (ML.CONS(p1,hull))

| ML.CONS(h,t) ⇒ hull ��→ (fn chull ⇒

lift ([Box.indexOf p1,Box.indexOf p2],cl,chull) (fn (l,hull) ⇒

let val (v1,v2) = (Box.valueOf p1,Box.valueof p2)

fun select (a,b) =

if (P.distToLine (v1, v2) (Box.valueOf a) >

P.distToLine (v1, v2) (Box.valueOf b))

then a

else b

val rmax = ML.combine select l

val rest = C.modref (rmax ��→ (fn max ⇒ splitM (max,p2,l,hull)))

in rmax ��→ (fn max ⇒ splitM (p1,max,l,rest)) end)))

end

in rp1 ��→ (fn p1 ⇒ rp2 ��→ (fn p2 ⇒ splitM (p1,p2,ps,hull))) end

fun qhull l =

C.modref ((ML.lengthLessThan 2 l) ��→ (fn b ⇒

if b then ML.write ML.NIL

else let fun select f (a,b) =

if f (Box.valueOf a, Box.valueOf b) then a

else b

val min = ML.combine (select P.toLeft) l

val max = ML.combine (select P.toRight) l

val h = C.modref (max ��→ (fn m ⇒

ML.write (ML.CONS(m,C.modref (ML.write ML.NIL))))))

in split (min, max, l, h) end))

end

Fig. 8. Self-adjusting Quick Hull.
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Fig. 9. Timings for quick hull.

time increases as the input size increases. At its peak, garbage-collection time
constitutes 67% of the total execution time. One reason for this can be that
self-adjusting programs build and store the dynamic dependence graphs and
the memo tables during the initial execution. Although the ratio for garbage
collection can be relatively high, this is less of a problem for the initial run, be-
cause an initial run takes place only once—the computation adjusts to changes
via change propagation.

The bottom left figure shows the average time for a deletion/insertion
via change propagation. This quantity increases very slowly with the input
size. The time for garbage collection constitute no more than 40% of the
total execution time even for large inputs. It peaks for the input size of
approximately 64K.

To get a sense of how fast change propagation is, we compare the time
for change propagation to the time for recomputing from scratch (by running
an ordinary, non-adaptive, implementation of the quick-hull algorithm). We
define the speedup obtained by change propagation as the time for recomputing
from scratch divided by the time for performing a change propagation after
an insertion or deletion. Figure 9 shows the average speedup computed as
Tverifier(I)/TavgDelIns(I) with and without the time for garbage collection. The
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experiments show that the speedup increases to more than a factor of two
thousand as the input size increases.

4 Emulating a language using a library

So far we have considered a setting where the keys used for memo lookups
are completely explicit, leaving the programmer in full control—and with the
full burden. This burden can become cumbersome when one wants to exploit
the fact that only parts of a given input contribute to the result of the com-
putation. Therefore, a different (and complementary) technique is selective
memoization using an implementation that automatically tracks the relevant
parts of the input. Like self-adjusting computation, selective memoization
imposes constraints on programs.

In previous work we discussed the design of a language with modal types
that can enforces these constraints at compile time [3]. A tiny program frag-
ment in such a language could be the following:

mfun f (x, y, z) = mif x < 0 then let! yv = y in return g(yv) end

else let! zv = z in return h(zv) end

Keyword mfun introduces a memoizing function. Initially, all of its arguments—
here x, y, and z—are considered resources. During execution, the function
keeps track of how it uses its resources, recording this information in a trace
called a branch. Memoization is based on that branch.

In the example, no call of f will depend on both y and z simultaneously.
Moreover, the decision between y and z is based just on the sign of x; x’s
magnitude is ignored. So after having evaluated f(-1,2,3) once, a call of
f(-2,2,4) would result in a successful memo table lookup.

The part of the computation that actually gets memoized is represented
by the expression under return. To facilitate this memoization, each instance
of a memoizing function has its own memo table. The table is indexed by
the value of the branch at the time of the return. A branch describes the
execution path through the function and records for every decision point which
direction was taken. Moreover, it records the values that were obtained by
reading resources (using let!).

For this to work, the code must have the property that by the time execu-
tion reaches return, the function must “be done” with all its resources. To
enforce this, the expression under return must not mention (and therefore
cannot depend on) any resources. With a language specifically designed with
this in mind, the compiler can easily check such a constraint. In contrast, a
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library has to rely on the existing type system of its host language, in our case
SML. It is tempting to try using an abstract constructor for resource types,
providing only a limited set of operations for its instances. Here is an attempt
at such a design:

type α resource

val bang: α resource → α

val mless: int resource * int → bool resource

val mif: bool resource * (unit → β) * (unit → β) → β

· · ·

val return: (unit → α) → α

The body of the above example could be rendered as:

mif (mless (x, 0), fn () ⇒ let yv = bang y in return (fn () ⇒ g(yv) end)

fn () ⇒ let zv = bang z in return (fn () ⇒ h(zv) end))

Unfortunately, this is a false start. The ML type system can restrict the
set of operations that are applicable, but it does nothing to prevent the mere
mention of a variable. Thus, it does not stop anyone from incorrectly “sim-
plifying” the code by applying bang to a resource under a return:

mif (mless (x, 0), fn () ⇒ return (fn () ⇒ g(bang y))

fn () ⇒ return (fn () ⇒ h(bang z))

Still, it is possible to construct a library which enforces the required invariant.
The trick is to avoid ever naming resources, again using a technique that is
similar to monadic programming [6]. Just like the state monad which manip-
ulates a mapping from locations to values without naming this mapping, we
will manipulate resources without naming them.

Selective memoization could easily be combined with the ideas described
earlier: modifiable references and change propagation. For simplicity, however,
this section focuses on the memoization part to demonstrate that supporting it
using a library is possible but awkward, and that a better basis would require
direct linguistic support (e.g., in form of the modal type system described in
previous work).

4.1 Memo-computations

The library consists of combinators for constructing memo-computations (see
Figure 10). A memo-computation is an abstract value c of type (α, ν, ρ)
mc. It represents a program point within a memoizing function—which can
be viewed as a delimited continuation up to the corresponding return. The
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type (α, ν, ρ) mc

val return: (α, ν, ν) mc

val Do: (ν → µ) * (α, µ, ρ) mc → (α, ν, ρ) mc

val pair: ((α * β) * γ, ν, ρ) mc → (α * (β * γ), ν, ρ) mc

val unpair: (α * (β * γ), ν, ρ) mc → ((α * β) * γ, ν, ρ) mc

val dup: (α * (α * β), ν, ρ) mc → (α * β, ν, ρ) mc

val swap: (α * (β * γ), ν, ρ) mc → (β * (α * γ), ν, ρ) mc

val swap2: (α * (β * (γ * δ)), ν, ρ) mc → (α * (γ * (β * δ)), ν, ρ) mc

val drop: (β, ν, ρ) mc → (α * β, ν, ρ) mc

val Bang: (β, int * ν, ρ) mc -> (int * β, ν, ρ) mc

val If: (β, ν, ρ) mc * (β, ν, ρ) mc -> (bool * β, ν, ρ) mc

val Case: (β, ν, ρ) mc * ((α * α list) * β, ν, ρ) mc -> (α list * β, ν, ρ) mc

val memo: (α * unit, unit, ρ) mc -> α -> ρ

Fig. 10. A combinator interface for memo-computations

continuation has access to resources of type α and to a non-resource “accu-
mulator” of type ν. It eventually produces a result of type ρ. When it is time
to return a value, a memoizing function simply discards its leftover resources
and produces the current accumulator as the answer.

The accumulator starts out with some constant value (here: unit). Any
impact that resources have on its value is monitored and recorded as part of
the branch. If we ignore the possibility of side effects, then all other values
that could affect the state of the accumulator are invariant with respect to
any given instance of a memoizing function. Therefore, this value does not
need to be taken into account when performing memo lookups. Depending on
the computations being performed, ν can be instantiated to arbitrary types.
The programmer uses the Do combinator to specify computations as SML
functions taking an accumulator to a new accumulator. Sub-computations
specified using Do are subject to memoization.

We cannot use ordinary SML functions for operating on resources as doing
so would “leak” resources, making it possible to violate the desired invariants.
The alternative is to let the library provide combinators for operating on
resources. Since we want to be able to deal with more than one resource at
a time, we organize multiple resources into a stack of resources and impose
the corresponding constraint that α is to be instantiated to a resource stack
type. A resource stack type is either unit (representing no resources) or τ *

σ where τ is a resource type and σ is a resource stack type. Possible resource
types are boxed types, pairs of resource types, the type bool, and τ list

where τ is another resource type. For simplicity of exposition, we assume that
int is the only boxed type.

The first group of resource-related combinators is for manipulating the re-

U. Acar et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 127–154144



source stack by constructing and deconstructing pairs (pair, unpair), making
it possible to shuffle an arbitrary entry to the top, dropping resources that are
no longer needed (drop), duplicating resources (dup), and so on. Notice that
these operations do not have to be recorded as part of the branch; the fact that
they participated in some computation is recoverable from the path through
the flow-graph 4 , and the path is being recorded.

The second group (consisting of Bang, If, and Case) provides combinators
for reading resources while transferring their values to the accumulator, for
branching on boolean resources, and for doing case analysis on list resources.
These operations extend the branch.

Finally, the memo combinator caps off a memo-computation and turns it
into a memoized function. The function’s argument appears as the only ele-
ment on the initial resource stack; the initial accumulator is empty.

4.2 Examples

Assuming a combinator lt for comparing an integer resource to a constant,
thereby turning it into a boolean resource, 5 we can write our introductory
example as follows:

fun g (x:int):int = . . . fun h (x:int):int = . . .

val f: int * (int * int) → int =

memo (unpair (swap (unpair (swap2 (swap (

lt (0, If (swap (drop (Bang (Do (fn (y, ()) ⇒ g(y), return)))),

drop (Bang (Do (fn (z, ()) ⇒ h(z), return)))))))))))

Notice the “reverse polish” feel of this code. The type constraint on f is
actually unnecessary as the ML compiler can infer it.

A slightly more elaborate example is that of a function which takes a list
of integers and produces a sorted list consisting of every other element of its
argument. Memoization will ignore those elements that do not contribute to
the answer. We must construct a loop using the internal fixpoint combinator
fix (see Section 4.4) to be able to iterate over a list. The bindings of memo-
computations to SML variables sortit and loop act as labels, the mention
of those labels in place of a memo-computation act as unconditional control
transfers similar to a goto:

4 This observation holds for all non-branching computations that do not transfer data
between the resources and the accumulator.
5 The type of lt is int * (bool * α, ν, ρ) mc → (int * α, ν, ρ) mc.
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val sortodd: int list → int list =

let val sortit = Do (ListMergeSort.sort op >, return)

in memo (Do (fn () ⇒ [],

fix (fn loop ⇒ Case (sortit,

unpair (Bang (Do (op ::, Case (sortit, unpair (drop loop)))))))))

end

Programming with these combinators definitely feels a bit unusual—except,
perhaps, to Forth programmers [15]. The biggest problem, however, is some-
thing we only mentioned in passing so far: All supported operations on re-
sources such as our lt above would have to be built into the library from the
beginning. To avoid leakage of resources, the set of such operations could not
be extended (at least not safely) using ML code. In the end it seems that
aside from imposing a strange programming style, a safe library incurs seri-
ous problems with scalability. Therefore, providing language- and compiler
support ultimately looks like the better proposition.

4.3 Under the hood

Given a working implementation of memo tables and hashing, a simple im-
plementation of the combinator library, shown in Figure 11, is actually very
short. We represent memo-computations as functions taking four arguments:
the resources, the accumulator suspended as a thunk, the branch (represented
as a list of hash values), and the memo-table. Upon return, the accumu-
lator is forced if and only if there is no memo-match. Function memo allo-
cates a new memo-table and returns a function which passes this table to the
computation—along with an empty branch and an empty accumulator.

Notice that the Do combinator causes its argument f to be composed into
the current non-resource thunk. As a result, this function will not be invoked
until return, and in case of a successful memo lookup it will not be called at
all.

The Bang combinator extends the branch with the hash of the resource
being read. If and Case indicate in the branch which of their respective two
continuations was selected.

4.4 Recursion

We distinguish between two kinds of recursion involving memo computations:
internal and external. Internal recursion is always tail-recursion and corre-
sponds to loops within the control flow graph representing the body of a memo-
ized function. Recursive calls do not involve separate memo-table lookups but
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type branch = hashvalue list

type (α, ν, ρ) mc = α * (unit → ν) * branch * ρ memotable → ρ

fun return ( , a, br, mt) =

case lookup (mt, br) of

SOME ans ⇒ ans

| NONE ⇒ let val ans = a () in insert (mt, br, ans); ans end

fun memo c = let val mt = newtable ()

in fn x ⇒ c ((x, ()), fn () ⇒ (), [], mt)

end

fun pair c ((x, (y, z)), a, br, mt) = c (((x, y), z), a, br, mt)

fun unpair c (((x, y), z), a, br, mt) = c ((x, (y, z)), a, br, mt)

fun dup c ((x, y), a, br, mt) = c ((x, (x, y)), a, br, mt)

fun swap c ((x, (y, z)), a, br, mt) = c ((y, (x, z)), a, br, mt)

fun swap2 c ((x, (y, (z, w))), a, br, mt) = c ((x, (z, (y, w))), a, br, mt)

fun drop c ((x, y), a, br, mt) = c (y, a, br, mt)

fun Do (f, c) (x, a, br, mt) = c (x, f o a, br, mt)

fun lt (k, c) ((x, y), a, br, mt) = c ((x < k, y), a, br, mt)

fun Bang c ((x, y), a, br, mt) = c (y, fn () ⇒ (x, a ()), hash x::br, mt)

fun If (ct, ) ((true, x), a, br, mt) = ct (x, a, hash 0::br, mt)

| If ( , cf) ((false, x), a, br, mt) = cf (x, a, hash 1::br, mt)

fun Case (cn, ) (([], y), a, br, mt) = cn (y, a, hash 0::br, mt)

| Case ( , cc) ((x::l, y), a, br, mt) = cc (((x, l), y), a, hash 1::br, mt)

Fig. 11. Implementation of branch library

val fix: ((α, ν, ρ) mc → (α, ν, ρ) mc) → (α, ν, ρ) mc

fun fix mkc = let fun c (x, a, br, mt) = mkc c (x, a, br, mt) in c end

val memofix: ((α → ρ) → (α * unit, unit, ρ) mc) → α → ρ

fun memofix mkc = let val mt = newtable ()

fun f x = mkc f ((x, ()), fn () ⇒ (), [], mt)

in f end

Fig. 12. Recursion for memo-computations

simply pass along the current branch. As shown in Figure 12, internal recur-
sion is implemented using a fixpoint combinator fix for memo-computations
which, internally, is nothing more than an ordinary fixpoint combinator.

External recursion occurs when computations specified using Do call the
memoized function itself as a subroutine. For this we need memofix, a version
of memo which has an integrated fixpoint combinator. The memofix combi-
nator is not expressible directly in terms of memo plus some ordinary fixpoint
combinator as this would require abstracting over the memoized function it-
self. That, in turn, causes the call of memo to be suspended, and since every
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call of memo generates a fresh memo table, the desired reuse of earlier results
would not take place. (A similar issue arises in Erkök and Launchbury’s work
on recursive monadic bindings [11].)

5 Conclusions

In this paper we present a library for writing programs that adjust to changes
to their data automatically—we call such programs self-adjusting. The library
makes writing self-adjusting programs nearly as easy as writing ordinary pro-
grams by enabling the programmer to transform an ordinary program into a
self-adjusting program. Our experiments show that the library accepts an effi-
cient implementation, and that self-adjusting programs can adjust to changes
significantly faster than recomputing from scratch.

We also show some techniques that help enforce the numerous invariants
required for self-adjusting programs to work correctly. We conclude, however,
that restricting oneself to the tools provided by existing programming lan-
guages (even relatively sophisticated ones such as ML) does not make this
easy. Fully general and scalable solutions probably require direct linguistic
support.
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A The Implementation

The code below assumes the existence of the following structures or functors:
MemoTable, Box, PriorityQueue, and TimeStamps.

signature COMBINATORS =

sig

type ’a modref = ’a Modref.t

type ’a cc

val modref : ’a cc -> ’a modref

val write : (’a * ’a -> bool) -> ’a -> ’a cc

val read : ’b Modref.t * (’b -> ’a cc) -> ’a cc

val mkLift : (’b *’b -> bool) -> (int list * ’b) -> (’b Modref.t -> ’d) -> ’d

val mkLiftCC : ((’b * ’b -> bool) * (’d * ’d -> bool)) ->

int list * ’b -> (’b Modref.t -> ’d cc) -> ’d cc

val change: (’a * ’a -> bool) -> ’a modref -> ’a -> unit

val deref : ’a modref -> ’a

val propagate : unit -> unit

end

structure Comb :> COMBINATORS =

struct

type ’a modref = ’a Modref.t

type ’a cc = ’a modref -> Modref.changeable

type (’b, ’g) liftpad = (’b -> ’g) MemoTable.t * ’g MemoTable.t

type (’b, ’g) liftpadCC = (’b -> ’g cc) MemoTable.t * ’g Modref.t MemoTable.t

fun liftPad () = (MemoTable.new (), MemoTable.new ())

fun write eq x d = Modref.write eq d x

fun read (r, recv) d = Modref.read r (fn x => recv x d)

val modref = Modref.modref

val change = Modref.change

val deref = Modref.deref

val propagate = Modref.propagate

fun memoize (pad:’a MemoTable.t) key (f: unit -> ’a) =

let

fun run_memoized (f,r) =

let

val t1 = !(Modref.now)

val v = f()

val t2 = !(Modref.now)

val nt1o = TimeStamps.getNext t1

val _ =

case nt1o of

NONE => r:=SOME(v,NONE)

| SOME(nt1) =>

if (TimeStamps.compare (nt1,t2)=LESS) then

(r := SOME(v,SOME(nt1,t2)))

else

(r := SOME(v,NONE))

in v end
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fun reuse_result (t1,t2) =

let

val _ = TimeStamps.spliceOut (!(Modref.now),t1)

val _ = Modref.propagateUntil t2

in ()end

fun memoize’ (r:’a MemoTable.entry) =

case !r of

NONE => run_memoized (f,r)

| SOME(v,to) =>

case to of

NONE => v

| SOME(t1,t2) => (reuse_result (t1,t2); v)

in

memoize’ (MemoTable.find(pad,key,!Modref.now))

end

fun lift (p1,p2) eqb (key,b) f =

let fun f’ () = let val r = Modref.empty ()

in fn b => let val _ = change eqb r b

in memoize p2 key (fn _ => f (r)) end

end

in memoize p1 key f’ b end

fun mkLift eqb = lift (liftPad ()) eqb

fun mkLiftCC (eqb,eqd) =

let

fun lifted arg f =

let fun f’ (b) = let val r = modref (f b) in read (r, write eqd) end

in lift (liftPad ()) eqb arg f’ end

in

lifted

end

end

signature MODIFIABLE =

sig

type ’a modref

type ’a t = ’a modref

type changeable

type time = TimeStamps.t

val init : unit -> unit

(**********************************************************************

** Standard operations with modifiables.

**********************************************************************)

val empty: unit -> ’a modref

val modref: (’a modref -> changeable) -> ’a modref

val read : ’a modref -> (’a -> changeable) -> changeable

val write : (’a * ’a -> bool) -> ’a modref -> ’a -> changeable

(**********************************************************************

** Meta-machine operations

**********************************************************************)

val change: (’a * ’a -> bool) -> ’a modref -> ’a -> unit

val deref : ’a modref -> ’a
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val propagate : unit -> unit

val propagateUntil : time -> unit

end

structure Modref : MODIFIABLE=

struct

type time = TimeStamps.t

type changeable = unit

exception UnsetMod

(**********************************************************************

** Time Stamps

**********************************************************************)

val now = ref (TimeStamps.add (TimeStamps.init ()))

val frameStart = ref (!now)

val finger = ref (!now)

fun insertTime () =

let val t = TimeStamps.add (!now)

in now := t; t

end

(**********************************************************************

** Priority Queue

**********************************************************************)

structure Closure =

struct

type t = ((unit -> unit) * time * time)

fun compare (a as (ca,sa,ea), b as (cb,sb,eb)) = TimeStamps.compare(sa,sb)

fun isValid (c,s,e) = not (TimeStamps.isSplicedOut s)

end

structure PQueue = PriorityQueue (structure Element=Closure)

type pq = PQueue.t

val PQ = ref PQueue.empty

fun initQ() = PQ := PQueue.empty

fun insertQ e = PQ := PQueue.insert (e,!PQ)

fun findMinQ () =

let val (m,q) = PQueue.findMin (!PQ)

val _ = PQ := q

in m end

fun deleteMinQ () =

let val (m,q) = PQueue.deleteMin (!PQ)

val _ = PQ := q

in m end

(**********************************************************************

** Modifiables

**********************************************************************)

type ’a reader = (’a -> unit) * time * time

datatype ’a readers = NIL | FUN of (’a reader * ’a readers)

datatype ’a modval = EMPTY | WRITE of ’a * ’a readers

type ’a modref = ’a modval ref

type ’a t = ’a modref

fun empty () = ref EMPTY

fun modref f =

let val r = (ref EMPTY)

in (f (r); r) end
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fun read modr f =

case !modr of

EMPTY => raise UnsetMod

| WRITE (v,_) =>

let val t1 = insertTime()

val _ = f(v)

val t2 = insertTime ()

val WRITE (v,rs) = !modr

val rs’ = FUN((f,t1,t2),rs)

in modr := WRITE(v,rs’)

end

fun readAtTime(modr,r as (f,_,_)) =

case !modr of

EMPTY => raise UnsetMod

| WRITE(v,rs) => (modr := WRITE(v,FUN (r,rs)); f v)

fun addReadersToQ (rs: ’a readers, modr : ’a modref) =

let fun addReader (r as (f,t1,t2)) =

if TimeStamps.isSplicedOut(t1) then ()

else insertQ(fn () => readAtTime(modr,r),t1,t2)

fun addReaderList rlist =

case rlist of

NIL => ()

| FUN(r,rest) => (addReader (r); addReaderList rest)

in addReaderList rs

end

fun write comp modr v =

case !modr of

EMPTY => modr := WRITE (v,NIL)

| WRITE(v’,rs) =>

if comp (v,v’) then ()

else let val _ = modr := WRITE(v,NIL)

in addReadersToQ (rs,modr)

end

fun deref modr =

case !modr of

EMPTY => raise UnsetMod

| WRITE (v,_) => v

(**********************************************************************

** Change propagation

**********************************************************************)

fun propagateUntil (endTime) =

let fun loop () =

case (findMinQ ()) of

NONE => ()

| SOME(f,start,stop) =>

if (TimeStamps.isSplicedOut start) then loop ()

else if (TimeStamps.compare(endTime,stop) = LESS) then ()

else let val _ = deleteMinQ ()

val finger’ = (!finger)

val _ = now := start

val _ = finger := stop

val _ = f()

val _ = finger := finger’

val _ = TimeStamps.spliceOut (!now,stop) handle e => raise e

in loop ()

end

in (loop (); now := endTime)

end

fun propagate () =
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let fun loop () =

case (findMinQ ()) of

NONE => ()

| SOME(f,start,stop) =>

let val _ = deleteMinQ ()

val finger’ = (!finger)

val _ = now := start

val _ = finger := stop

val _ = f()

val _ = finger := finger’

val _ = TimeStamps.spliceOut (!now,stop) handle e => raise e

in loop ()

end

in loop ()

end

fun init () = (now := TimeStamps.init(); initQ())

fun change comp l v = write comp l v

end
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