
Type-Directed Automatic Incrementalization

Yan Chen Joshua Dunfield Umut A. Acar
Max Planck Institute for Software Systems
{chenyan, joshua, umut}@mpi-sws.org

Abstract
Application data often changes slowly or incrementally over time.
Since incremental changes to input often result in only small
changes in output, it is often feasible to respond to such changes
asymptotically more efficiently than by re-running the whole com-
putation. Traditionally, realizing such asymptotic efficiency im-
provements requires designing problem-specific algorithms known
as dynamic or incremental algorithms, which are often significantly
more complicated than conventional algorithms to design, analyze,
implement, and use. A long-standing open problem is to develop
techniques that automatically transform conventional programs so
that they correctly and efficiently respond to incremental changes.

In this paper, we describe a significant step towards solving
the problem of automatic incrementalization: a programming lan-
guage and a compiler that can, given a few type annotations de-
scribing what can change over time, compile a conventional pro-
gram that assumes its data to be static (unchanging over time) to an
incremental program. Based on recent advances in self-adjusting
computation, including a theoretical proposal for translating purely
functional programs to self-adjusting programs, we develop tech-
niques for translating conventional Standard ML programs to self-
adjusting programs. By extending the Standard ML language, we
design a fully featured programming language with higher-order
features, a module system, and a powerful type system, and im-
plement a compiler for this language. The resulting programming
language,LML, enables translating conventional programs deco-
rated with simple type annotations into incremental programs that
can respond to changes in their data correctly and efficiently.

We evaluate the effectiveness of our approach by considering a
range of benchmarks involving lists, vectors, and matrices, as well
as a ray tracer. For these benchmarks, our compiler incrementalizes
existing code with only trivial amounts of annotation. The resulting
programs are often asymptotically more efficient, leading to orders
of magnitude speedups in practice.

Categories and Subject DescriptorsF.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs

1. Introduction
Much modern software is highly dynamic: it continually receives
input data and responds by computing the corresponding output.
This dynamic nature of computation creates both opportunities
and challenges. Opportunities arise because the input data, which

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright © 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

changes over time as a result of interactions, often changesincre-
mentally—by a small amount at a time. Such incremental changes
make it possible to compute the new output efficiently by reusing
intermediate computations. In the common case, updating the out-
put dynamically instead of recomputing it leads to asymptotically
more efficient response times, which can dramatically improve
practical efficiency. The challenges stem from the difficulty of re-
alizing this potential: designing, analyzing, and implementing soft-
ware systems that can operate efficiently on dynamically changing
data.

In the algorithms and programming-languages communities,
considerable work has been done on dynamic systems; for surveys,
see Chiang and Tamassia [1992]; Ramalingam and Reps [1993];
Agarwal et al. [2002]; Demetrescu et al. [2005]. The algorithms
community devises ad hoc dynamic algorithms for specific prob-
lems. While these algorithms can be very efficient, often achieving
optimal complexity, they are generally hard to design, analyze, and
implement. Dynamic algorithms are also difficult to compose in a
modular fashion, limiting their applicability in large software sys-
tems. The programming-languages community develops languages
for expressing dynamic programs and compilation techniques for
translating these high-level programs into executables that respond
efficiently to dynamic changes. This approach is often calledin-
cremental computation.Incremental computation can dramatically
simplify developing dynamic software, but achieving optimal effi-
ciency has remained elusive. This is perhaps unsurprising, because
the problem is inherently challenging: the compiler is ultimately
expected to generate code that significantly outperforms the source
code, often by an asymptotically significant margin.

Recent advances inself-adjusting computationmade important
progress on the problem of incremental computation. By propos-
ing dynamic dependency graphs, and a change propagation algo-
rithm [Acar et al. 2006] that utilizes a particular form of memo-
ization techniques [Acar et al. 2009, 2008], the approach enables
the programmer to express dynamic computations via several lan-
guage abstractions. Previous work extended existing languages in-
cluding C [Hammer et al. 2009, 2011] and ML [Acar et al. 2009;
Ley-Wild et al. 2008] to support self-adjusting computation. Eval-
uations showed that the approach can achieve asymptotically effi-
cient updates for a reasonably broad range of benchmarks [Acar
et al. 2009; Hammer et al. 2011], and even help solve major open
problems in a range of domains including computational geome-
try [Acar et al. 2010] and machine learning [Sümer et al. 2011].
More recent work generalized the approach to support parallel
computation on multicores, taking advantage of the performance
benefits of parallelism and incremental computation at the same
time by exploiting structural similarities between them [Burckhardt
et al. 2011; Acar et al. 2011]. The approach has also been applied to
large-scale MapReduce computations in distributed systems [Bha-
totia et al. 2011].

While these advances chart a viable approach to incremen-
tal computation by eliminating the need to design and implement

sophisticated algorithms for dynamic problems, they still require
significant programmer involvement. For example, writing a self-
adjusting program in∆ML [Ley-Wild et al. 2008] requires care-
fully annotating the program with specific primitives that deter-
mine how to construct the dynamic dependence graph and perform
change propagation.

In this paper, we design a language,LML, that allows the pro-
grammer to derive self-adjusting software from conventional pro-
grams through simple type annotations and implement a compiler
for LML. Specifically,LML extends the Standard ML language,
which has a range of features including higher-order functions,
an advanced module system, and imperative references, with level
type qualifiers, which enable marking certain data aschangeable,
that is, subject to modifications over time. For example, when pro-
gramming a ray tracer, we mark the surface properties of objects as
changeable. We implement a compiler for our language that gener-
ates code that can be executed with fixed input as usual, but also can
automatically respond to changes by updating its output via change
propagation.

Our approach to automatic incrementalization builds on re-
cent advances in self-adjusting computation. Specifically, Chen
et al. [2011] develop an algorithm for translating purely functional
programs decorated with type annotations into self-adjusting pro-
grams. Their work, however, is purely theoretical; it considers only
a simplified language, and provides no implementation or empirical
results. We extend their algorithm for full Standard ML including a
key imperative feature (mutable references), and extend the MLton
compiler [MLton] for Standard ML (Section 3) to generate effi-
cient self-adjusting executables from type annotations by using the
extended translation algorithm.

Our compiler takes the user annotations and propagates them
through various phases of the compiler to intermediate code, where
it applies the translation algorithm. Assuming a runtime system
that provides primitives for self-adjusting computation, the trans-
lation algorithm generates code by minimally inserting the self-
adjusting primitives via type-directed, local rewrites. Such local
rewrites, however, can lead to globally suboptimal code by insert-
ing redundant calls to self-adjusting primitives. We therefore for-
mulate a global rewriting system for eliminating such redundant
code, and prove that the rewriting rules are terminating and con-
fluent (Section 3.4). We implement the run-time system for self-
adjusting primitives directly in SML.

We evaluate our implementation (Section 4) by considering
benchmarks including various primitives on lists, sorting functions,
vector operations, matrix operations, and a ray tracer. For each of
these, we only need to insert some keywords into the program to
specify the desired behavior. Specifically, most benchmarks require
trivial decorations, often amounting to inserting type qualifiers in
one or two lines of code. No changes to the structure of the types, or
any part of the code itself, are necessary. The executables generated
by the compilers respond automatically and efficiently to small
changes to their data. We frequently observe significant asymptotic
improvements in efficiency and obtain significant speedups ranging
from 10% (for large changes that affect a significant portion of the
output) to several orders of magnitude.

2. Overview
We illustrate our approach through a simple example. First, we de-
scribe matrix multiplication in ordinary SML. Next, we describe
a self-adjusting version, which could be written by hand, that
can update its output asymptotically more efficiently (by nearly
a quadratic factor) than a complete re-computation. We then de-
scribe our approach, where we obtain the same code automatically
by adding a single type qualifier to the code and compiling it with
our compiler. In the example, we consider a particular kind of

change to the input and briefly outline other possibilities in Sec-
tion 2.4. In all cases, the executable generated by our compiler
updates the output correctly and efficiently, leading to orders of
magnitude speedups in practice (Section 4).

2.1 Matrix Multiplication in SML

The SML code in Figure 1 multiplies two matrices, where a matrix
is represented as a vector of rows, and each row is a vector of in-
tegers. Omitting the annotation$C, this is the usualΘ(n3) matrix-
multiplication algorithm. Using themap function over vectors, it
iterates over the rows of the first matrix and the columns of the sec-
ond (transposed for faster access). By using themap2 function, it
multiplies each element of the row with the corresponding element
of the column, and usingreduce, adds these results to generate one
element of the output matrix.

The functiontranspose, whose code is not shown here, trans-
poses a matrix. The functionsmap, map2 andreduce perform stan-
dard operations on vectors: Given a vectora = 〈a1, . . . , an〉 and a
functionf, the callmap(a,f) returns a vector〈f(a1), . . . , f(an)〉).
Similarly, given two vectorsa andb and a binary functionf, the
call map2(a,b,f) returns 〈f(a1, b1), . . . , f(an, bn)〉). Given a
vectora = 〈a1, . . . , an〉, an identity elementZ and an associative
binary function⊕, the callreduce(a,Z,⊕) returnsa1⊕· · ·⊕an

if n > 0, andZ if n = 0.

2.2 Self-Adjusting Matrix Multiplication

Suppose that we are interested in changing the elements of the
matrix incrementally and updating the result of multiplication. One
approach would be to develop an algorithm specific to this problem.
For matrices with integers or floating-point numbers, this does
not seem particularly difficult: we could devise an algorithm that
undoes the effect of the changed input element and updates the
sum by factoring in its new value. However, such an algorithm
assumes addition and multiplication are commutative and have
inverses; in reality, floating-point arithmetic does not have these
properties. Moreover, matrix multiplication can be used for a whole
array of computations, some of which don’t admit such inverses. In
these cases, it is significantly more challenging to come up with an
efficient incremental algorithm.

More generally, the history of research on incremental algo-
rithms demonstrates that they can be extremely challenging to de-
sign and implement. For example, a paper on an advanced dynamic
algorithm for planar convex hull exceeds 100 pages [Jakob 2002];
that algorithm appears very difficult to implement, and to the best of
our knowledge, has never been implemented. In contrast, standard
non-incremental algorithms for convex hull can be implemented in
less than 50 lines of SML.

Writing self-adjusting matrix-multiply. Self-adjusting computa-
tion offers a way to write efficient incremental algorithms by mod-
ifying the code for the standard, non-incremental algorithm. The
idea is to distinguish betweenstableandchangeabledata and insert
operations that manipulate changeable data. Incremental changes
can be made to the changeable parts of the input and achange prop-
agationalgorithm can be used to update the computation. Figure 2
shows code written in a direct style similar to previous work [Acar
et al. 2009]. Stable data is handled as usual: the type of a stable
integer is simplyint. Changeable data, however, is stored inmod-
ifiables: a changeable integer becomes anint mod. We declare
matrix as((int mod) vector) vector: a vector of vectors of
integers, where the integer elements are wrapped by modifiables.
This allows changing the individual elements of the matrix and up-
dating the computation automatically.

When writing a self-adjusting program by hand, we first deter-
mine the changeable parts of the data, and then edit the code to ex-
plicitly manipulate such data throughRead, Write andMod prim-

type matrix = ((int $C) vector) vector

multiply : matrix * matrix → matrix

fun multiply (A, B) =

let val Tb = transpose B

in
map (A, fn row ⇒

map (Tb, fn col ⇒
reduce (map2 (row,

col,

fn (a,b) ⇒ a*b),

0,

fn (x, res) ⇒ x+res)))

end

Figure 1. Matrix multiplication in SML.

type matrix = ((int mod) vector) vector

multiply : matrix * matrix → matrix

fun multiply (A, B) =

let val Tb = transpose B

in
map (A, fn row ⇒

map (Tb, fn col ⇒
reduce (map2 (row,

col,

fn (a,b) ⇒ Mod (Read a (fn a’ ⇒
Read b (fn b’ ⇒ Write (a’*b’))))),

Mod (Write 0),

fn (x, res) ⇒
Mod (Read x (fn x’ ⇒ Read res (fn res’ ⇒

Write (x’+res’)))))))

end

Figure 2. Compiler-generated self-adjusting matrix multiplication.

itives. This process is relatively cumbersome and error-prone: we
must identify the sections of code that depend on changeable data,
conforming to a modal type system. Specifically, aRead primitive
can be used only inside a “changeable” section of code, which must
be contained within the dynamic scope of aMod operation, and
eachMod operation must end with aWrite that places a change-
able value in it.

As an example, consider the function passed tomap2, fn (a,b)
⇒ a*b. This function directly operates on elements of the ma-
trix, which are changeable integers. Since they are changeable in-
tegers, they must be stored in modifiables and have typeint mod
in the self-adjusting program. Thus, the function cannot multiply
a and b directly. Instead, we write aRead that passes the con-
tents of the modifiablea to a function fn a’ ⇒ Read b
A secondRead gets the contents of the modifiableb. The a’
andb’ appearing inWrite (a’*b’) have typeint, so we can
multiply them normally. Becausea’*b’ depends on changeable
data (information flows froma and b, which are changeable),
it is also changeable, and must be written to a fresh modifiable:
Mod (... Write (a’*b’)).

In contrast, calls totranspose, map, map2 andreduce need
not be treated specially, because they operate on stable data (vec-
tors); note that the elements of the vector are changeable but the
vectors themselves are not. The bodies of these functions, however,
still need to be modified to accommodate changes in the types: they
all now operate on vectors whose elements are changeable, and in
some cases, their other arguments also change (e.g., the function
argument ofmap2).

Change propagation. Given the self-adjusting matrix multiplica-
tion function, we can run it in much the same way as running the
standard version. Such a complete run takes asymptotically as long
as the complete run but incurs some constant-factor overhead in
practice.

After a complete run, we can change any or all of the change-
able data and update the output by performing change propagation.
As an example, consider changing one element of the first matrix
and performing change propagation. This propagation will trigger
execution of then multiplication operations that use this element
and thereduce operation that computes the new sum. When mul-
tiplying n×n matrices, it is not difficult to show that change prop-
agation takesO(n logn) time. Since at leastn entries in the output
matrix must be updated, this is within a logn factor of the trivial
lower boundΩ(n); in fact, it is likely thatO(n logn) is tight in the
general case. Consequently, change propagation is nearly quadrat-

ically faster than a complete execution, a huge gain in efficiency.
In writing this self-adjusting program, we realized this efficiency
without designing and implementing an incremental algorithm, but
we nevertheless had to make significant changes to the code.

2.3 Type-Directed Self-Adjustment

As the description of the self-adjusting matrix multiply suggests,
writing self-adjusting programs can require rather invasive changes
to the code. In our approach, our compiler can derive self-adjusting
programs automatically, based on simple type annotations. For
example, given the code in Figure 1 and the annotation$C (the first
line) that makes the element typeint changeable, our compiler
derives the code in Figure 2 automatically. As a result, starting with
a trivial annotation to the type declarations, our compiler yields a
near-quadratic-time improvement in run time.

We refer to the type annotations aslevels and the resulting
types aslevel types. Programmers need only annotate the types
of changeable data with$C; all other types remain stable. For
example:

• int is a stable integer;
• int $C is a changeable integer;
• (int $C) vector is a stable vector of changeable integers.

The last type may look odd—how can the vector be stable when
its elements are changeable? But it simply expresses that each
element is individually changeable, while the vector as a whole is
not changeable: it would not be possible to replace the entire vector
except by changing each element individually.

2.4 Remarks

In the above example, we allow changes to individual elements
by representing matrices as stable vectors with changeable ele-
ments:((int $C) vector) vector. Our approach also makes it
possible to use many other representations, again deriving self-
adjusting code automatically. For example, if we expect entire
rows of the input matrices to change at once, we could choose
to represent matrices as changeable rows of stable elements,
((int) vector $C) vector. This would track the computation
only at the granularity of entire rows and result in optimal updates
for full row changes of the input. Using our approach, we could
derive a self-adjusting program suitable for this case by changing
the type annotation, with no changes to the source code itself at all.

Similarly, it can be beneficial to use a blocked representation,
where the matrix is represented with blocks, smaller matrices of

sizem ×m for some constantm (typically between 10 and 100).
This representation has superior locality, often resulting in better
practical efficiency. Our compiler easily generates self-adjusting
code that treats the blocks, and not individual elements, as change-
able. As we show in our experimental evaluation (Section 4), this
blocking technique leads to extremely time- and space-efficient
self-adjusting computations.

3. Design and Implementation
To support type-directed, automatic incrementalization, we ex-
tended Standard ML with a single keyword$C, a type qualifier,
and extended the MLton compiler [MLton] for Standard ML to
generate self-adjusting executables. This extension to SML does
not restrict the language in any way, allowing all its features to be
used freely, including the module language.

The most important additions to the compiler are a translation
phase, an optimization phase, and a run-time system. In this sec-
tion, we describe the structure of our system, and discuss some of
its key components in more detail.

3.1 Structure of the Compiler

The compiler pipeline is shown in Figure 3. Although the surface
language has only one type annotation,$C, in all intermediate lan-
guages, we explicitly mark all types as stable or changeable us-
ing two type qualifiers$S and $C. We modified all of MLton’s
phases that come before the new translation phase (Translate) to
propagate these type annotations. The translation phase uses type
qualifiers to generate self-adjusting code in the SXML intermedi-
ate language of MLton, as discussed in the next section. The opti-
mization phase eliminates some important redundancies of the code
produced by the translation phase. For technical reasons related to
MLton’s dead code elimination (see Section 3.5), we stop the com-
piler after the optimization phase and run an unmodified version of
MLton on the SXML output, producing an executable.

3.2 Pre-Translation Phases

We extended the MLton lexer and parser to handle types with$C
annotations, producing abstract syntax in which types include level
information. We systematically added levels to several typed inter-
mediate languages (CoreML, “XML”, and SXML), and modified
each pre-translation phase to accept and propagate levels in types.
Thus, we leverage MLton’s broad scope—it accepts full Standard
ML—and its various code transformations: elaboration, defunc-
torization, linearization (conversion to A-normal form), dead code
elimination, monomorphization of ML-polymorphic code, etc.

3.3 Self-Adjusting Translation

We apply our translation on MLton’s SXML intermediate lan-
guage, a monomorphic subset of SML in A-normal form. SXML
is suitable for the transformation to self-adjusting code because
our transformation algorithm expects, and produces, monomorphic
code in A-normal form.

Our translation algorithm extends the algorithm of Chen et al.
[2011] to support full SML, including (recursive) data types and
imperative references. The translation algorithm is relatively tech-
nical, making its presentation difficult in the context of this paper,
but we give a high-level overview and briefly illustrate some of the
extensions needed to handle full SML. The translation algorithm
takes SXML code and transforms it into SXML code containing
self-adjusting computation primitives, whose implementations will
be supplied by the run-time system. The self-adjusting primitives
includemod, read, andwrite functions for creating, reading from,
and writing to modifiable references. At a high level, the transla-
tion rules inspect the code locally, insertreads where changeable

data is used (according to type information), and ensure that each
read takes place within the dynamic scope of a call tomod. To
ensure this and other correctness properties, the rules distinguish
stable and changeable modes.

Γ ⊢ x : τ →֒
$S

x ′

Γ ⊢ (ref x) : (τ ref $C) →֒
$S

mod (write(x ′))
(Ref)

Γ ⊢ x2 : τ ′ ref $C →֒
$S

x2 Γ, x1 : τ ′ ⊢ e : τ →֒
$C

e ′

Γ ⊢ let x1 = !x2 in e : τ →֒
$C

read x2 as x1 in e ′ (Deref)

Γ ⊢ x1 : τ ′ ref $C →֒
$S

x1

Γ ⊢ x2 : τ ′ →֒
$S

x ′
2 Γ ⊢ e : τ →֒

$C
e ′

Γ ⊢ let = (x1:= x2) in e : τ →֒
$C

impwrite x1:= x
′
2 in e ′ (Assign)

Figure 4. Translation rules for mutable references

Figure 4 shows the translation rules for mutable references,
which we translate to modifiables. The translation judgmentΓ ⊢
e : τ →֒

ε e ′ is read “in environmentΓ and modeε, source
expressione at typeτ translates toe ′”. In stable mode$S, the
translation produces stable code that cannot inspect changeable
data or directly use changeable code; in changeable mode$C, the
translation produces changeable code that can appear within the
body of a read and can manipulate references. For translation
of imperative references, we add another primitiveimpwrite that
updates the value of a modifiable directly.

Stable functions may be called with either stable or changeable
arguments. For example, the program might use the built-in SML
+ function on changeable integers. Our translation algorithm han-
dles such polymorphic usage by inserting coercions, which read
changeable arguments and create a modifiable from the result.

3.4 Optimization

Our translation algorithm follows a system of inductive rules,
which are guided only by local information—the structure of types
and terms. This locality is key to simplifying the algorithm and the
implementation but it often generates code with redundant oper-
ations. For example, translatingfst x, wherex :

(
int$C × τ2

)$S
,

in changeable mode generates the termread (mod (let r =
fst x in write(r))) as x ′ in write(x ′), which is redundant: it cre-
ates a temporary modifiable for the first projection ofx and im-
mediately reads its contents. A more efficient translation,let x ′ =
fst x in write(x ′), avoids the temporary modifiable.

Such redundancies turn out to be common, because of the local
nature of the translation algorithm. We therefore developed a post-
translation optimization phase to eliminate redundant operations.
Figure 5 illustrates the rules that drive the optimization phase.
Each rule eliminates three operations: reading from a modifiable,
writing to a modifiable, and creating a modifiable. As we show in
Section 4.8, this optimization phase reduces the execution time for
self-adjusting programs by up to 60%.

Eliminating write-create-read. The left-hand side of rewrite rule
(1) evaluates an expressione1 into a new modifiable, then imme-
diately reads the contents of the modifiable intox ′. The right-hand
side evaluatese1 and binds the result tox ′ with no extra modifiable.

Eliminating create-read-write. The left-hand side of (2) evalu-
atese (which, since it is the body of amod, must end in awrite),
creates a modifiable, reads the just-written value intox ′, and writes
it again. The right-hand side just evaluatese.

SML source FrontEnd:
(lex, parse) AST

Elaborate:
infer types,
defunctorize

CoreML

Defunctorize:
linearize,

lift datatypes,
elim. dead code,

. . .

XML
Monomorphise

(values and
datatypes)

SXML

Translate:
use type information

to insert self-adjusting
primitives

SXML

Optimize:
remove

redundant
operations

+

SXML

self-adjusting
run-time library

MLton compiler
(unmodified)

Self-adjusting
executable

Figure 3. The structure of our compiler:new phases ,modified phases ,unmodified phases , intermediate languages

read (mod (let r=e1 in write(r)))
as x ′ in e2 −→ let x ′ = e1 in e2 (1)

read (mod e) as x ′ in write(x ′) −→ e (2)
mod (read e as x ′ in write(x ′)) −→ e (3)

Figure 5. Optimization rules

Eliminating read-write-create. Rule (3) is similar to rule (2):
the left-hand side reads some modifiablee into a variablex ′, and
immediately writesx ′ back to a new modifiable; the right-hand side
only evaluatese.

These rules are shrinking reduction rules guaranteed to make
the program smaller [Appel and Jim 1997]. The rules are also
terminating and confluent. Termination is immediate, because in
each rule, the right-hand side is smaller than the left-hand side:
rule (1) replaces onelet with another and drops aread, a mod
and awrite. In rules (2) and (3), the right-hand side is a proper
subterm of the left-hand side. Confluence (the property that all
choices of rewrite sequences eventually yieldα-equivalent terms)
is not immediate, but is straightforward:

Theorem 3.1. Rules (1)–(3) are locally confluent.

Proof. First, the left-hand sides of rules (1) and (2) may over-
lap exactly: either rule can be applied toread (mod (let r =
e1 in write(r))) as x ′ in write(x ′), but the right-hand sides of (1)
and (2) arelet x ′ = e1 in write(x ′) and let r = e1 in write(r),
which areα-equivalent. Rules (2) and (3) may overlap critically,
but in all cases yieldα-equivalent terms. One case (the other is
similar) is:

read (mod (read e3 as x ′
3 in x ′

3)) as x ′
2 in write(x ′

2)
(2)
−→ read e3 as x ′

3 in write(x ′
3)

read (mod (read e3 as x ′
3 in x ′

3)) as x ′
2 in write(x ′

2)
(3)
−→ read e3 as x ′

2 in write(x ′
2)

Otherwise, redexes overlap only when an entire left-hand side
is a subterm of thee in another left-hand side (possibly of the
same rule). Suchnon-critical overlapcases follow as in Baader
and Nipkow [1998, pp. 137–138].

Since the rules are terminating and locally confluent, by New-
man’s lemma [Newman 1942], they are globally confluent. Thus,
we can safely apply them in any order, to arbitrary subterms, until
no rules apply. In practice, it suffices to traverse the program only
once: if we traverse it in preorder, we apply rules near the leaves of
the tree first. That means the subterms of the left-hand sides have

already been rewritten, so the right-hand sides will contain no more
candidate subterms.

3.5 Final Stage

The translated, optimized SXML code has explicit self-adjusting
computation primitives, suitable for use with a self-adjusting run-
time library implementing these primitives. Our implementation
of this library is written in SML, so we might expect to run the
full MLton pipeline on the library and source program together
to produce an executable. Since, however, no calls to the library
appear in the user’s source program, dead code elimination deletes
the library code from the program during MLton’s Defunctorize
phase. Instead of re-engineering MLton’s dead code elimination to
specially treat library code as live, we take a simpler approach.
Taking advantage of the fact that SXML is a subset of SML,
we cut off the pipeline after producing optimized self-adjusting
SXML, combine the SXML output of the translation phase with
the library, and generate an executable by running the unmodified
MLton compiler.

3.6 Runtime Environment

As described above, we compile the translated user program to-
gether with a self-adjusting run-time library. This library imple-
ments the self-adjusting primitives (Mod, Read, Write) used by
the translated code. When executed, the library constructs a de-
pendency graph during the complete run. The library also provides
facilities for changing the input and invoking change propagation
to reflect changes to the output.

4. Experiments
We present an experimental evaluation of our approach and com-
pare it to previous work.

4.1 Benchmarks

We implemented a number of benchmarks in ourLML language,
including standard self-adjusting-computation benchmarks from
previous work [Acar et al. 2009; Ley-Wild et al. 2008], additional
benchmarks on vectors and matrices, and a ray tracer.LML makes
it relatively straightforward to derive self-adjusting versions of
programs. Specifically, we simply wrote the standard code for our
benchmarks and changed the type declarations to allow for changes
to the input data. For the ray tracer, we used an unmodified SML
implementation of a sphere ray tracer [King 1998].

Our benchmarks include some standard list primitives (map,
filter, split), quicksort, and mergesort (qsort, msort). These
include simple iteration (map, filter, split), accumulator pass-
ing (qsort), and divide-and-conquer algorithms (qsort, msort).

All of these list benchmarks operate on integers:map appliesf(i) =
i÷3+i÷5+i÷7 to each element;filter keeps the elements when
f(i) is even;split partitions its input;qsort andmsort imple-
ment sorting algorithms. Similarly, our vector benchmarks include
vec-reduce, vec-mult (dot product),mat-vec-mult (matrix-
vector multiplication),mat-add, transpose (matrix transpose),
mat-mult, andblock-mat-mult (matrix multiplication on ma-
trices that use a simple blocked representation).

The vector and matrix benchmarks implement the correspond-
ing vector or matrix algorithm with double-precision (64-bit) float-
ing point numbers; when multiplying two doubles, we normalize
the result by their sum to prevent overflows when operating on
large matrices. For our matrix benchmarks, we consider two differ-
ent representations of matrices: the standard representation where
the elements are laid out in memory in row-major order, and the
blocked representation where elements are blocked into small sub-
matrices. Our final benchmark is an off-the-shelf ray tracer that
supports point and directional lights, sphere and plane objects, and
diffuse, specular, transparent, and reflective surface properties.

To support flexible changes to the input data, our list bench-
marks permit insertion and deletion of any element from the input;
in LML, this requires simply specifying the “tail” of the lists as
changeable. Our vector and matrix benchmarks permit changing
any element of the input; inLML, this requires simply specifying
the vector and matrix elements as changeable. Our blocked matrix
benchmark permits changing any block (and thus any element) of
the input. Our ray tracer permits changing the surface properties
of objects in the image; thus, for a fixed input scene (lights and
objects) and output image size, we can render multiple images via
change propagation.

The type annotations needed to enable these changes in our self-
adjusting versions of the benchmarks were trivial. Each benchmark,
including the ray tracer, required changes to no more than a few
lines of code—in fact, never more than two lines.

For each benchmark, we evaluate a conventional implemen-
tation and four self-adjusting versions. Three of these are hand-
coded versions from previous work, “CPS” [Ley-Wild et al. 2008],
“CEAL” [Hammer et al. 2011] and “AFL” [Acar et al. 2009]. We
use these benchmarks exactly as published, except for setting the
test parameters and input data consistently to enable comparison.
The last set, labeled “Type-Directed”, consists of the self-adjusting
programs generated by ourLML compiler. OurLML list bench-
marks use the same memoization strategy as the “AFL” versions of
the list benchmarks; the rest of the benchmarks do not need mem-
oization inLML.

4.2 Experimental Setup

We used a 2 GHz Intel Xeon with 64 GB memory running Linux.
The machine has multiple cores but all benchmarks are sequen-
tial. We compile all our benchmarks using ourLML compiler. For
comparison to previous work on∆ML, we use the publicly avail-
able∆ML compiler [DeltaML]. We execute all benchmarks with
the “gc-summary” option to report garbage collection statistics,
but exclude garbage-collection times from our experiments to fo-
cus on the actual computation time; we separately discuss garbage
collection in Section 4.10.

For our measurements, we generate all inputs and all data
changes uniformly randomly and sample over all possible changes.
More specifically, the inputs to our integer benchmarks are random
permutations of integers from1 ton, wheren is the input size. The
inputs to our floating-point benchmarks are randomly generated
floating-point numbers via the SML library. To increase the cover-
age of our evaluation, for each measurement, we average over four
different input instances, as well as all input changes over each of
these inputs.

Application Conv. Self-Adj. Self-Adj. Overhead Speedup

(Input size) Run (s) Run (s) Avg. Prop. (s)

map(106) 0.05 0.83 1.1×10–6 16.7 4.6×104

filter(106) 0.04 1.25 1.4×10–6 27.7 3.2×104

split(106) 0.14 1.63 3.2×10–6 11.6 4.4×104

msort(105) 0.30 5.83 3.5×10–4 19.5 850.92

qsort(105) 0.05 3.40 4.9×10–4 64.2 108.17

vec-reduce(106) 0.05 0.26 4.4×10–6 5.5 1.1×104

vec-mult(106) 0.18 1.10 6.7×10–6 5.9 2.8×104

mat-vec-mult(103) 0.17 0.81 1.4×10–5 4.6 1.3×104

mat-add(103) 0.10 0.36 4.9×10–7 3.7 2.0×105

transpose(104) 2.14 2.15 5.1×10–8 1.0 4.2×107

mat-mult(400) 10.65 90.22 5.8×10–3 8.5 1.8×103

block-mat-mult(103) 7.03 8.38 4.6×10–3 1.2 1.5×103

Table 1. Summary of benchmark timings.

For each benchmark we measure the complete running time
of the conventional and the self-adjusting versions. All reported
times are in seconds or milliseconds, averaged over four indepen-
dent runs. Timings exclude creation of the initial input; in change-
propagation timings, we also exclude the initial, pre-processing run
(construction of the test data plus the complete run). To measure ef-
ficiency in responding to small data changes, we compute theprop-
agation timefor responding to an incremental change. The nature
of the change depends on the benchmarks. For list benchmarks, we
report the average time to insert or delete an element from the input
list (average over all elements). For vector and matrix benchmarks,
we report the average time to change an element of the vector or
matrix by replacing it with a randomly generated element (aver-
aged over all positions in the vector or one position per row in the
matrix). For the ray tracer, we consider a range of changes which
we describe later when discussing the ray tracer in detail.

4.3 Experiments: Correctness

To verify that our compiler generates self-adjusting executables
that can respond to changes to their data correctly, we used three
approaches: type checking, manual inspection, and extensive test-
ing. Our compiler generates self-adjusting code to a text file, which
we then type-check and compile along with a stand-alone self-
adjusting-computation library, which we have separately imple-
mented. SML’s type system verifies that the translated code sat-
isfies certain invariants. Since we can inspect the translated code
manually, we can also spot-check the code, which is not a fool-
proof method but increases confidence. We have used this facility
extensively when implementing the compiler.

Additionally, we have developed a testing framework, which
makes a massive number of randomly generated changes to the
input data, and checks that the executable responds correctly to
each such change by comparing its output with that of a “verifier”
(reference implementation) that computes the given output using a
straightforward, non-incremental algorithm. Using this framework,
we have verified the correctness of all the self-adjusting executables
generated by our compiler.

4.4 Experiments: Timings Summary

Table 1 shows a summary of the timings that we collected for our
benchmarks at fixed input sizes (written in parentheses after the
benchmark’s name). All times are reported in seconds. The first
column (“Conv. Run”) shows the run time of the conventional
(reference) implementation with an input of specified size. The

conventional version cannot self-adjust, but does not incur the
overhead of trace construction as self-adjusting versions do. The
second column (“Self-Adj. Run”) shows the run time of the self-
adjusting version with an input of specified size. Such a self-
adjusting run constructs a trace as it executes, which can then be
used to respond automatically to incremental changes to data via
change propagation. The third column (“Self-Adj. Avg. Prop.”)
shows the average time for a change propagation after a small
change to the input (as described in Section 4.1, the specific nature
of the changes depend on the application).

The last two columns of the table, “Overhead” and “Speedup”,
report the ratio of the self-adjusting run to the conventional run,
and the ratio of the conventional run to change propagation. The
overhead is the slowdown that a self-adjusting run incurs com-
pared to a run of the conventional program. The speedup mea-
sures the speedup that change propagation delivers compared to re-
computing with the conventional version. An analysis of the data
shows that the overheads are higher for simple benchmarks such
as list operations (which are dominated by memory accesses), but
significantly lower for other benchmarks. The overheads forqsort
are traditionally high, commensurate with the previous work. In all
benchmarks, we observe massive speedups, thanks to the asymp-
totic improvements delivered by change propagation. In the com-
mon case, the overhead is incurred only once: after a self-adjusting
run, we can change the input data incrementally and use change
propagation, with massive speedups.

4.5 Experiments: Merge Sort

Although it is not apparent from the summary in Table 1, our
experiments show that for all our benchmarks, the overheads of
self-adjusting versions are constant and do not depend on the input
size, whereas speedups, being asymptotically significant, increase
with the input size. To illustrate this property, we examine our
merge sort benchmark; in Appendix A, we show the corresponding
data for four more representative benchmarks.

The plot on the left in Figure 6 shows the time (in seconds) for
the complete run of self-adjusting merge sort compared to the con-
ventional version, for a range of input sizes (x axis). The figure
suggests that, in both the conventional and self-adjusting versions,
the complete-run time grows almost linearly, and they exhibit the
same asymptotic complexity,O(n logn). The plot in the middle
of Figure 6 shows the time—in milliseconds—for change propa-
gation after inserting/deleting one element for each input size (x
axis). As can be seen, the time taken by change propagation grows
sublinearly as the input size increases. This is consistent with the
O(logn) bound that we can show analytically. The plot on the right
in Figure 6 shows the speedups for different input sizes (x axis): the
time for a run of the conventional algorithm divided by the time for
change propagation. The plots show that speedups increase linearly
with the input size, consistent with the theoretical bound. To obtain
this asymptotic improvement, we only insert one keyword in the
code and use our compiler to generate the self-adjusting version.

4.6 Experiments: Matrix Multiplication

Our type-based approach gives the programmer great flexibility in
specifying changeable elements in different granularity. The dif-
ference in the data representation can lead to dramatically different
time and space performance. For example,mat-mult performs ma-
trix multiplication using the standard matrix representation where
each element of the matrix is changeable, whileblock-mat-mult
considers the blocked representation where elements are blocked
into groups of20 × 20 submatrices. As we can see from Table 1,
although the blocked version has a smaller speedup, as changing
one element requires recomputing the whole submatrix, it has much
less overhead compared to the standard representation. To further

explore this trade-off, Figure 7 shows the time and space of blocked
matrix multiplication with block sizes from20× 20 to 50× 50.

Run time. In Figure 7, the leftmost plot shows the time for the
complete run of self-adjusting blocked-matrix multiply with dif-
ferent block sizes, as well as the conventional version. The figure
suggests that all benchmarks exhibit the same asymptotic complex-
ity, O(n3). We also observe that as the block size increases, the
overhead becomes smaller. This is because we treat each block as
a single modifiable, reducing the number of modifiables tracked at
run time. The second plot in Figure 7 shows the time for change
propagation after changing a block for each input size (x axis) with
different block sizes. The time taken by change propagation grows
almost linearly as the input size increases, which is consistent with
theO(n logn) bound that we can compute analytically. Changing
any part of a block requires recomputing the whole block, so prop-
agation is faster with smaller block sizes. The third plot in Figure 7
shows speedups for different input sizes. Speedups increase asymp-
totically with input size, consistent with the theoretical bound of
O(n2/ logn). Smaller blocks have higher speedups. For example,
for a1000×1000 matrix, the20×20 block enables1200× speedup,
while the50× 50 block has280× speedup.

Space. The rightmost plot in Figure 7 shows the memory used
by change propagation with different block sizes (the complete run
never uses more memory than change propagation). As with all
other approaches to self-adjusting computation, our approach ex-
ploits a trade-off between memory (space) and time (we compare
the space usage of other approaches in Section 4.9). We store com-
putation traces in memory and use them to respond to incremen-
tal data changes, resulting in an increase in memory usage and a
decrease in response time. Typically, self-adjusting programs use
asymptotically as much memory as the run-time of the computa-
tion. The plot shows results consistent with the theoretical bound
of O(n3). Although a smaller block size leads to larger speedups,
it requires more memory, because the total number of modifiables
created is proportional to the number of blocks in the matrix.

As can be seen from the plot, memory consumption can be
high. However, it can be reduced by programmer control over
dependencies, which self-adjusting computation provides [Acar
et al. 2009; Hammer et al. 2011]: The programmer can specify
larger chunks of data, instead of single units, as changeable. Our
approach further simplifies such control by requiring only the types
to be changed. As a concrete example, our matrix-multiplication
benchmark with50 × 50 blocks consumes about 300 MB as we
change each element of the input matrix and update the output.
This is about 10 times the space needed to store the two input
matrices and the result matrix, but enables a280× speedup when
re-computing the output.

4.7 Experiments: Ray Tracer

Many applications are suitable for incremental computation, be-
cause making a small change to their input on average causes small
changes to their output. But some applications are not. Arguably,
incremental computation techniques should be avoided or used cau-
tiously in such applications. To evaluate the effectiveness of our
approach in such limiting cases, we considered ray tracing, where
a small change to the input can require a large fraction of the out-
put image to be updated. In our experiments, we rendered an input
scene of 3 light sources and 19 objects with an output image size
of 512× 512 and then repeatedly changed the surface properties
of a single surface (which may be shared by multiple objects in the
scene). We considered three kinds of changes: a change to the color
of a surface, a change from a diffuse (non-reflective) surface toa
mirrored surface, and a change from a mirrored to diffuse surface.
We measured the time for a complete run of both the conventional

Time for complete run (s)

 0

 1

 2

 3

 4

 5

 6

 0 20000 40000 60000 80000 100000

T
im

e
(s

)

Input Size

Type-Directed
Conventional

Time for change propagation(ms)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20000 40000 60000 80000 100000

T
im

e
(m

s)

Input Size

Type-Directed

Speedup of change propagation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20000 40000 60000 80000 100000

S
pe

ed
up

Input Size

Type-Directed

Figure 6. Time for complete run; time and speedup for change propagation formsort

Time for complete run (s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 400 500 600 700 800 900 1000

T
im

e
(s

)

Input Size

20x20
30x30
40x40
50x50

Conventional

Time for change propagation(ms)

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
im

e
(m

s)

Input Size

50x50
40x40
30x30
20x20

Speedup of change propagation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000
S

pe
ed

up

Input Size

20x20
30x30
40x40
50x50

Memory for change propagation

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

M
em

 (
M

)

Input Size

20x20
30x30
40x40
50x50

Figure 7. Time for complete run; time, speedup and memory for change propagation for blocked matrix multiply

Surface Image Diff. Conv. Self-Adj. Self-Adj. Overhead Speedup

Changed (% pixels) Run (s) Run (s) Avg. Prop. (s)

AD 57.22% 4.07 6.32 3.04 1.55 1.34

AM 57.22% 1.91 5.75 8.48 3.02 0.22

BD 8.43% 2.37 4.87 0.55 2.05 4.29

BM 8.43% 2.44 4.42 1.00 1.81 2.44

CD 9.20% 2.43 3.97 0.59 1.64 4.09

CM 9.20% 2.16 3.86 1.12 1.79 1.92

DD 1.85% 2.44 3.83 0.12 1.57 20.21

DM 1.85% 2.19 3.85 0.20 1.76 10.74

ED 11.64% 4.10 6.28 1.27 1.53 3.22

EM 11.74% 2.79 5.83 1.87 2.09 1.49

FD 19.47% 2.85 5.78 1.57 2.03 1.82

FM 19.47% 2.83 3.92 2.97 1.38 0.95

GD 27.37% 2.85 3.92 2.58 1.38 1.11

GM 27.47% 2.82 5.36 4.64 1.90 0.61

Table 2. Summary of ray tracer timings.

and the self-adjusting versions, and the average propagation time
for a single toggle of a surface property. For each change to the in-
put, we also measured the change in the output image as a fraction
of pixels. Figure 8 illustrates an example.

Table 2 shows the timings for various kinds of changes. The first
column shows the percentage of pixels changed in the output. Each
pair of rows corresponds to changing the surface properties of a
set of objects (sets labeledA throughG) to diffuse (non-reflective)
and mirror surfaces in that order, as indicated by superscripts·D
and ·M respectively. Our measurements show that even when a
large fraction of the output image must change, our approach can
perform better than recomputing from scratch. We also observe that
since mirrors reflect light, making a surface mirrored often requires

Figure 8. Two images produced by our ray tracer. To produce the
right-hand image, we change the surfaces of the four green balls
from diffused surfaces to mirrored surfaces. Performing change
propagation yields about a 2× speedup over re-computing the
output.

performing more work during change propagation than making
the surface diffuse. Indeed, we observe that the speedups obtained
for mirror changes are consistently about half of the speedups for
diffuse changes.

4.8 Experiments: Compiler Optimizations

In Section 3.4 we described some key optimizations that eliminate
redundancies in the code. To measure the effectiveness of these
optimizations, we measured the running time for our benchmarks
compiled with and without these optimizations. Since the optimiza-
tions always eliminate redundant calls, we expected them to im-
prove efficiency consistently, and also quite significantly. As can
be seen in Figure 9 by comparing the bars labeled “Unopt.” (green)
and “Type-Directed” (black), our experiments indeed show that the
optimizations can improve the time of the complete run and the
time and space for change propagation by as much as 60%. The
complete run never uses more space than change propagation does.
We will discuss the rest of Figure 9 in Section 4.9.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

map filter qsort msort

Time for Complete Run
CPS
CEAL
Unopt.
Type−Directed
AFL

 0

 1

 2

 3

 4

 5

 6

map filter qsort msort

Time for Change Propagation

CPS
CEAL
Unopt.
Type−Directed
AFL

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

map filter qsort msort

Memory for Change Propagation

CPS
CEAL
Unopt.
Type−Directed
AFL

Figure 9. Time and memory for complete run and change propa-
gation at fixed input sizes, normalized to “Type-Directed” (set to
1). We note for readability that the top-down order of the legend
corresponds to the horizontal ordering of the bars.

4.9 Experiments: Comparison to Previous Work

We compare our results with previous work: the combinator library
(AFL) in SML [Acar et al. 2009], the continuation-passing style
(CPS) approach in SML [Ley-Wild et al. 2008], and the C-based
CEAL system [Hammer et al. 2011], which is a carefully engi-
neered and highly optimized system that can be competitive with
hand-crafted algorithms [Demetrescu et al. 2004]. Figure 9 shows
this comparison for the common benchmarks with fixed input sizes
of 1 million keys for list operations and 100,000 keys for sorting,
with results normalized to “Type-Directed” (= 1.0).

The comparison shows that, for both time and space, our ap-
proach is within a factor of two of AFL, a carefully engineered
hand-written library. The principal reason for AFL’s performance
is its multiple interfaces to the self-adjusting primitives, which the
programmer selects by hand. For example, AFL provides an unsafe
interface that the quicksort benchmark uses to speed up the parti-
tion, creating half as many modifiables as with the standard inter-
face. Our compiler does not directly support these low-level prim-
itives, so we cannot perform the same optimizations. In AFL, pro-
grammers need to restructure programs in monadic style, explicitly
constructing the dependency graph. This process is similar to doing
type inference and translation by hand. Our approach makes self-

Surface Image Diff. Type-Dir. CPS Speedup Type-Dir. CPS Speedup
Changed (% pixels) Run (s) Run (s) vs. CPS Prop (s) Prop (s) vs. CPS

AD 57.22% 6.32 5.88 0.93 3.04 4.36 1.43

AM 57.22% 5.75 7.35 1.28 8.48 13.86 1.64

BD 8.43% 4.87 8.06 1.66 0.55 1.01 1.82

BM 8.43% 4.42 7.75 1.75 1.00 1.80 1.80

CD 9.20% 3.97 7.97 2.01 0.59 1.15 1.93

CM 9.20% 3.86 7.63 1.98 1.12 1.93 1.72

DD 1.85% 3.83 7.95 2.07 0.12 0.21 1.75

DM 1.85% 3.85 7.57 1.97 0.20 0.28 1.39

ED 11.64% 6.28 5.88 0.94 1.27 2.52 1.98

EM 11.74% 5.83 12.41 2.13 1.87 3.44 1.84

FD 19.47% 5.78 11.96 2.07 1.57 3.00 1.91

FM 19.47% 3.92 9.44 2.41 2.97 5.41 1.82

GD 27.37% 3.92 9.64 2.46 2.58 4.69 1.82

GM 27.47% 5.36 11.02 2.06 4.64 8.60 1.85

Table 3. Comparison of ray tracer with CPS

adjusting programs much easier to write, yet their performance is
competitive with carefully-engineered self-adjusting programs.

Compared to CPS, our approach is approximately twice as fast,
even though the CPS approach requires widespread changes to the
program code and ours does not. The primary reason for the per-
formance gap is likely that the CPS-based transformation relies on
coarse approximations of true dependencies (based on continua-
tions); our compiler identifies dependencies more precisely by us-
ing a type-directed translation. Additionally, we compared our ray
tracer with one based on CPS, where our approach (“Type-Dir.”) is
approximately twice as fast as CPS (Table 3). Our approach often
uses slightly more space than the CPS based approach, probably
because of redundancies in the automatically generated code that
can be eliminated manually in the CPS approach.

Compared to CEAL [Hammer et al. 2011], our approach is usu-
ally faster but occasionally slightly slower. We find this very inter-
esting because the CEAL benchmarks use hand-written, potentially
unsound optimizations, such as selective destination-passing and
sharing of trace nodes [Hammer et al. 2011, Sections 7.2 and 8.1],
that can result in incorrectly updated output. We also compared our
approach to sound versions of CEAL benchmarks, which were a
factor of two slower than the unsound versions. We use up to five
times as much space; given that our approach uses space consistent
with the other ML based approach (“CPS”), this is probably be-
cause of differences between ML, a functional, garbage-collected
language, and C. When compared to sound versions of the CEAL
benchmarks, which is arguably the more fair comparison, CEAL’s
space advantage decreases by a factor of two.

To summarize, even though our approach accepts conventional
code with only a few type annotations, the generated programs
perform better than most hand-written code in two programming
languages, and are competitive with hand-written code in AFL.
Memory usage is comparable to other ML-based approaches.

4.10 Experiments: the Effect of Garbage Collection

In our evaluation thus far, we did not include garbage-collection
times because they are very sensitive to garbage collection parame-
ters, which can be specified during run time. For example, our com-
piler allows us to specify a heap size when executing a program. If
this heap size is sufficiently large to accommodate the live data of
our benchmarks, then the timings show that essentially no time is
spent in garbage collection. When we do not specify a heap size,
memory is managed automatically, taking care not to over-expand
the heap unnecessarily, by keeping the heap size close to the size of
the live data. With this setting, our timings show that garbage col-

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 300000 600000 900000

T
im

e
(m

s)

Input Size

App.
App. + G.C.

Figure 10. Propagation time forvec-reduce including GC time.

lection behaves differently in the complete run and change propa-
gation. The time can vary from negligible to moderate during com-
plete runs of self-adjusting executables. For example, in blocked
matrix multiplication, garbage collection times are less than 10%,
but in vector multiplication, garbage collection takes nearly half
of the total running time. Previous work on self-adjusting com-
putation shows similar tradeoffs [Hammer and Acar 2008; Acar
et al. 2009]. During change propagation, however, we observe that
garbage-collection times are relatively small even when not using
a fixed heap. Figure 10 shows the garbage collection time for vec-
tor reduce, which is close to the worst-case typical behavior that
we obtain in our benchmarks. In some applications such as ray-
tracing and blocked matrix multiplication, garbage collection times
are negligible.

5. Related Work
The problem of enabling computation to respond efficiently to
changes has been studied extensively. We briefly examine some ear-
lier techniques for incremental computation and information flow.
Detailed background can be found in several excellent surveys [Ra-
malingam and Reps 1993; Chiang and Tamassia 1992; Agarwal
et al. 2002; Demetrescu et al. 2005; Sabelfeld and Myers 2003].

Incremental and self-adjusting computation.Earlier work on in-
cremental computation, which took place in the ’80s and ’90s, was
primarily based on dependence graphs and memoization. Depen-
dence graphs record the dependencies between data in a compu-
tation and use a change-propagation algorithm to update the com-
putation when the input is modified [Demers et al. 1981; Hoover
1987]. Dependence graphs have been effective in applications such
as syntax-directed computations, but are not general-purpose be-
cause change propagation cannot update the dependence structure.
As an alternative, researchers have proposed memoization (also
called function caching) [Pugh and Teitelbaum 1989; Abadi et al.
1996; Heydon et al. 2000]. A classic idea [Bellman 1957; Mc-
Carthy 1963; Michie 1968], memoization applies to any purely
functional program. It improves efficiency when executions of a
program with similar inputs involve similar function calls, but such
calls are relatively rare: small modifications to input can prevent
reuse by changing the arguments to many function calls.

More recent work on self-adjusting computation proposed a
particular technique for incremental computation that combines
dynamic dependence graphs [Acar et al. 2006] and a form of
computational memoization [Acar et al. 2009] to achieve effi-
cient updates. Variants of self-adjusting computation have been
implemented in several host languages such as C [Hammer et al.
2011], Java [Shankar and Bodik 2007], Haskell [Carlsson 2002],
and SML [Ley-Wild et al. 2008]. Self-adjusting computation often
achieves asymptotically efficient updates for a reasonably broad
range of benchmarks [Acar et al. 2009; Hammer et al. 2011],
can help verify runtime invariants [Shankar and Bodik 2007], and

even help solve major open problems in many domains including
computational geometry [Acar et al. 2010] and machine learn-
ing [Sümer et al. 2011]. More recent work shows that the approach
can be generalized to parallel computations, taking simultaneous
advantage of parallelism and incremental computation time by ex-
ploiting structural similarities between them [Hammer et al. 2007;
Burckhardt et al. 2011; Acar et al. 2011], as well as large-scale
distributed systems [Bhatotia et al. 2011].

Of all these previous approaches, DITTO [Shankar and Bodik
2007] and Incoop [Bhatotia et al. 2011] have the advantage of being
completely transparent—they require no programmer annotations
or changes to the code. But they only target specific domains—
invariant checking for DITTO and large-scale MapReduce com-
putations for Incoop—making them unsuited to general-purpose
computations. Of the general approaches, library-based systems
in SML and in C# [Acar et al. 2009; Burckhardt et al. 2011] re-
quire the programmer to guarantee certain invariants for correct-
ness. These invariants are nontrivial to check statically or dynami-
cally, and motivated the approaches taken by∆ML and CEAL.

∆ML [Ley-Wild et al. 2008] and the most recent version of
the CEAL language system [Hammer et al. 2011] can ensure that
self-adjusting programs respond to changes to their input correctly.
As described in Section 2,∆ML requires writing self-adjusting
programs in an explicit style by inserting several primitives that
can require substantial changes to the code. Recent work on CEAL
shows that a large fraction of annotations can be eliminated, but at
the cost of tracing and recording all dependencies, which can lead
to significant loss of time efficiency and space blowup.

The approach we describe in this paper uses a type-directed
translation to enable selective dependency tracking, recording only
the parts of the computation that can be affected by the changes. It
guarantees that the output is updated correctly and efficiently un-
der any changes to the data. The approach is based on the theoret-
ical work of Chen et al. [2011]. That work, however, considered a
minimal language and provided no implementation or practical ev-
idence that the approach can be realized in practice. As our exper-
imental evaluation shows, our implementation performs very well,
usually outperforming∆ML and CEAL even though they require
heavy programmer involvement, while our approach required only
tiny changes to type declarations and no changes to the code it-
self. Our approach thus allows taking advantage of the benefits of
self-adjusting computation without the burden of major program
restructuring.

Information flow. A number of information flow type systems
have been developed to check security properties, including the
SLam calculus [Heintze and Riecke 1998], JFlow [Myers 1999]
and a monadic system [Crary et al. 2005]. To save energy by ap-
proximating subcomputations, Sampson et al. [2011] use informa-
tion flow to analyze dependencies. The type system of Chen et al.
[2011] used many ideas from Pottier and Simonet [2003].

Coco [Swamy et al. 2011] transforms constructions such as ef-
fects from impure style (as in ML) to an explicit monadic style
(as in Haskell). In other words, it translates effects in lightweight
style into effects in a heavyweight style. But it does not sup-
port implicit self-adjusting computation: uses of effects, though
lightweight compared to monadic style, must be explicit in the
source program. Even such relatively lightweight constructs are
pervasive in explicit self-adjusting computations and, compared to
implicit self-adjusting computation, very tedious to program with.

6. Conclusion
We present the design, implementation, and evaluation of a pro-
gramming language and compiler that enable programmers to write
programs that respond automatically to changes to their data, us-

ing only simple type annotations. By design, our approach guar-
antees that the compiled programs respond to data changes cor-
rectly. Through self-adjusting-computation techniques and a care-
fully designed type-directed mechanism for identifying dependen-
cies, the compiler yields executables that can respond to incremen-
tal changes efficiently. Conventional benchmarks such as matrix
multiplication and ray tracers can be compiled to efficient incre-
mental executables, with only tiny changes to their type specifica-
tions. Our language and compiler take an important step in solving
the long-standing problem of creating high-level languages for de-
veloping software that can react to incremental change correctly
and efficiently with minimal programmer involvement.

Acknowledgments We thank Matthew A. Hammer for helping
with the CEAL benchmarks. We thank the anonymous PLDI re-
viewers for their very useful comments on the submitted version of
this paper.

References
M. Abadi, B. W. Lampson, and J.-J. Lévy. Analysis and caching of

dependencies. InInternational Conference on Functional Programming,
pages 83–91, 1996.

U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional program-
ming. ACM Trans. Prog. Lang. Sys., 28(6):990–1034, 2006.

U. A. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting computa-
tion. In Proceedings of the 25th Annual ACM Symposium on Principles
of Programming Languages, 2008.

U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan. An
experimental analysis of self-adjusting computation.ACM Trans. Prog.
Lang. Sys., 32(1):3:1–53, 2009.

U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu. Dynamic well-spaced
point sets. InSymposium on Computational Geometry, 2010.

U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu. Parallelism in dynamic
well-spaced point sets. InProceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, 2011.

P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M.Isard,
S. Har-Peled, J. Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin,
D. Manocha, D. Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan,
D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson. Algorithmic
issues in modeling motion.ACM Comput. Surv., 34(4):550–572, 2002.

A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. J.
Funct. Program., 7(5):515–540, Sept. 1997.

F. Baader and T. Nipkow.Term rewriting and all that. Cambridge Univer-
sity Press, 1998.

R. Bellman.Dynamic Programming. Princeton Univ. Press, 1957.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini. Incoop:
MapReduce for incremental computations. InACM Symposium on
Cloud Computing, 2011.

S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Twofor the
price of one: A model for parallel and incremental computation.In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2011.

M. Carlsson. Monads for incremental computing. InInternational Confer-
ence on Functional Programming, pages 26–35, 2002.

Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit self-adjusting
computation for purely functional programs. InInt’l Conference on
Functional Programming (ICFP ’11), pages 129–141, Sept. 2011.

Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational ge-
ometry.Proceedings of the IEEE, 80(9):1412–1434, 1992.

K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of information
flow security with mutable state.Journal of Functional Programming,
15(2):249–291, Mar. 2005.

DeltaML. DeltaML web site. http://ttic.uchicago.edu/~pl/
sa-sml/.

A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation of attribute
grammars with application to syntax-directed editors. InPrinciples of

Programming Languages, pages 105–116, 1981.

C. Demetrescu, S. Emiliozzi, and G. F. Italiano. Experimental analysis of
dynamic all pairs shortest path algorithms. InSODA ’04: Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
369–378, Philadelphia, PA, USA, 2004. ISBN 0-89871-558-X.

C. Demetrescu, I. Finocchi, and G. Italiano.Handbook on Data Structures
and Applications, chapter 36: Dynamic Graphs. CRC Press, 2005.

M. Hammer and U. A. Acar. Memory management for self-adjusting
computation. InInternational Symposium on Memory Management,
pages 51–60, 2008.

M. Hammer, U. A. Acar, M. Rajagopalan, and A. Ghuloum. A proposalfor
parallel self-adjusting computation. InDAMP ’07: Declarative Aspects
of Multicore Programming, 2007.

M. Hammer, G. Neis, Y. Chen, and U. A. Acar. Self-adjusting stack ma-
chines. InACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2011.

M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based language for
self-adjusting computation. InACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2009.

N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy
and integrity. InPrinciples of Programming Languages (POPL ’98),
pages 365–377, 1998.

A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise
dependencies. InProgramming Language Design and Implementation,
pages 311–320, 2000.

R. Hoover. Incremental Graph Evaluation. PhD thesis, Department of
Computer Science, Cornell University, May 1987.

R. Jakob. Dynamic Planar Convex Hull. PhD thesis, Department of
Computer Science, University of Aarhus, 2002.

D. J. King. A ray tracer for spheres, 1998.http://www.cs.rice.edu/
~dmp4866/darcs/nofib/spectral/sphere/.

R. Ley-Wild, M. Fluet, and U. A. Acar. Compiling self-adjusting programs
with continuations. InInt’l Conference on Functional Programming,
2008.

J. McCarthy. A basis for a mathematical theory of computation. In
P. Braffort and D. Hirschberg, editors,Computer Programming and
Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

D. Michie. “Memo” functions and machine learning.Nature, 218:19–22,
1968.

MLton. MLton web site.http://www.mlton.org.

A. C. Myers. JFlow: practical mostly-static information flow control. In
Principles of Programming Languages, pages 228–241, 1999.

M. H. A. Newman. On theories with a combinatorial definition of ”equiva-
lence”. Annals of Mathematics, 43(2):223–243, 1942.

F. Pottier and V. Simonet. Information flow inference for ML.ACM Trans.
Prog. Lang. Sys., 25(1):117–158, Jan. 2003.

W. Pugh and T. Teitelbaum. Incremental computation via function caching.
In Principles of Programming Languages, pages 315–328, 1989.

G. Ramalingam and T. Reps. A categorized bibliography on incremental
computation. InPrinciples of Programming Languages, pages 502–510,
1993.

A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1), 2003.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general low-
power computation. InProgramming Language Design and Implemen-
tation, pages 164–174, 2011.

A. Shankar and R. Bodik. DITTO: Automatic incrementalizationof data
structure invariant checks (in Java). InProgramming Language Design
and Implementation, 2007.

O. S̈umer, U. A. Acar, A. Ihler, and R. Mettu. Fast parallel and adaptive
updates for dual-decomposition solvers. InConference on Artificial
Intelligence (AAAI), 2011.

N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadicpro-
gramming in ML. InInternational Conference on Functional Program-
ming (ICFP), Sept. 2011.

A. Appendix

Time for complete run (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 300000 600000 900000

T
im

e
(s

)

Input Size

Type-Directed
Conventional

Time for change propagation(ms)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 300000 600000 900000

T
im

e
(m

s)

Input Size

Type-Directed

Speedup of change propagation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 300000 600000 900000

S
pe

ed
up

Input Size

Type-Directed

Figure 11. Time for complete run; time and speedup for change propagation forsplit

Time for complete run (s)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20000 40000 60000 80000 100000

T
im

e
(s

)

Input Size

Type-Directed
Conventional

Time for change propagation(ms)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 20000 40000 60000 80000 100000

T
im

e
(m

s)

Input Size

Type-Directed

Speedup of change propagation

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000 80000 100000

S
pe

ed
up

Input Size

Type-Directed

Figure 12. Time for complete run; time and speedup for change propagation forqsort

Time for complete run (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 300000 600000 900000

T
im

e
(s

)

Input Size

Type-Directed
Conventional

Time for change propagation(ms)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 300000 600000 900000

T
im

e
(m

s)

Input Size

Type-Directed

Speedup of change propagation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 300000 600000 900000

S
pe

ed
up

Input Size

Type-Directed

Figure 13. Time for complete run; time and speedup for change propagation forvec-mult

Time for complete run (s)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Type-Directed
Conventional

Time for change propagation(ms)

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0 200 400 600 800 1000

T
im

e
(m

s)

Input Size

Type-Directed

Speedup of change propagation

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0 200 400 600 800 1000

S
pe

ed
up

Input Size

Type-Directed

Figure 14. Time for complete run; time and speedup for change propagation format-add

