
Bridging Theory and Practice in Interaction
Stefan K. Muller1 and Umut A. Acar1,2

1 Carnegie Mellon University, Pittsburgh, PA, USA. {smuller, umut}@cs.cmu.edu
2 Inria, Paris, France.

Abstract
Many programs perform some interaction with the user or outside world by, for example,

taking user input via a GUI or a file system, or interacting with remote processes via a net-
work. Several techniques have evolved for developing interactive applications. Probably the
most widely-used, event-driven programming, has the advantage that it inherently supports con-
currency. Event-driven programs, however, are notoriously difficult to design, implement, and
maintain (e.g., [1, 3, 5]), primarily because the invariants of the program are broken into different
callbacks that interact using non-local control flow. For example, event-driven programs break
the key abstraction of a function call (callbacks may invoke each other and may not return to
their caller). Because callbacks may run at essentially any time, program invariants must hold
in the presence of a rather general form of concurrency.

As an example of the complexities of event-driven programs, consider the following subtle
race condition that might be found in an event-driven implementation of a Unix shell. Such
a shell may handle SIGCHLD signals (indicating that a child process has terminated) using a
callback that removes the process from a global job list. When starting a new job, the shell
forks a new process and adds it to the job list. The race condition occurs when a process starts
and runs to completion, and triggers the signal handler to remove the new job from the job list,
before the shell process adds it to the job list. Foreseeing this race condition requires reasoning
globally about when callbacks may run, and fixing it involves preventing the signal handler from
running at an inopportune time (a simple fix like adding the process to the job list before forking
doesn’t work, since the process ID is obtained only after forking).

A contrasting approach to event-driven programming is functional reactive programming
(FRP) [4], in which a program transforms time-varying values (called behaviors or signals) from
inputs to outputs. FRP is generally synchronous: all signal transformations run at all time steps,
though some may only produce values at certain times. As a result, most FRP implementations
do not handle concurrency. Elm [2] introduces some asynchrony but is still limited and does
not have a concurrent implementation. In addition, to avoid time and space leaks, many FRP
implementations also limit the expressiveness of the language by restricting the ways in which
signals can be used.

We thus ask the question: is there a better way? We believe that, to be widely useful, a
technique for writing interactive programs should excel at four properties:

Expressiveness. Interactive applications should be able to interact with many sources of
input and also perform complex computation.
Control over sampling/polling. If an interactive system samples (polls) input sources at
periodic intervals, frequency of sampling should be controllable by the programmer. Frequent
polling may be important to ensure correctness and responsiveness, or may be wasteful, and
this distinction can’t, in general, be made by a runtime system.
Concurrency. It should be possible to utilize concurrency to increase responsiveness.
Usability. It should be possible to implement and reason about programs at a high level.

Event-driven programming excels in all aspects except for usability, because it provides a
very low level of abstraction, requiring complex reasoning. FRP excels at usability, but does
not have the other three properties. In other words, event-driven programming and FRP can

© Stefan K. Muller and Umut A. Acar;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Bridging Theory and Practice in Interaction

be viewed as the two extremes of the design space. We seek a middle ground. As an intuitive
argument for why this should be possible, we draw an analogy with work on parallelism. Years of
research in this area have shown that implicit parallelism, which offers a layer of abstraction on
top of concurrency, is powerful enough to express many interesting parallel applications without
requiring the programmer to deal with the full complexity of concurrent programming. Similarly,
we believe that it is possible to design abstractions that satisfy the four properties above.

We have developed a set of interactivity abstractions that revolve around the idea of a factor,
which embodies the essence of interaction—two way communication—as a first-class value in a
higher-order programming language. Factors can be defined and used just like ordinary values
by, for example, employing higher-order operations, such as a map or fold. Since factors are
first-class values, they require no restrictions on the programming language and thus lead to no
loss of expressiveness. As a result, the programmer can write richly interactive code in a clean,
functional style. Factors can be used concurrently by using several primitives that can create
parallelism in a style similar to implicitly parallel languages. Thus, as in implicit parallelism, the
abstractions tame the full complexity of concurrency.

We have implemented factors (as an OCaml library) and a number of applications, including
various physics-based simulations, several GUI programs, an internet-based music streaming
server, and a version of the Unix shell described above. In the factor implementation of the Unix
shell, the race condition described above is not an issue because the asynchronous handling of
signals is localized to the parts of the code where it should occur. For example, the code for
the main input loop simultaneously waits for user input and signals. Because this asynchrony is
local, rather than global, it is easy to reason about when signals may be handled. The diverse set
of applications that we have implemented gives some practical evidence for the expressiveness of
the factor-based abstractions.

As part of our ongoing research, we have started evaluating our approach against existing
approaches both empirically and theoretically. The empirical evaluation involves developing a
performance-testing framework as well as benchmarks that isolate and test specific forms of inter-
action. The theoretical evaluation involves formally specifying the semantics of the abstractions
and establishing correspondences between them and well-understood forms of computation such
as functional programming, with benign effects such as non-determinism. We hope these eval-
uation techniques will be of independent interest as we and others continue to explore the rich
design space of concurrent interactive programs.

Acknowledgments

This research is partially supported by the National Science Foundation under grant numbers
CCF-1320563 and CCF-1408940, and by the European Research Council under grant number
ERC-2012-StG-308246.

References
1 Brian Chin and Todd Millstein. Responders: Language support for interactive applica-

tions. In Proceedings of the 20th European Conference on Object-Oriented Programming,
ECOOP’06, pages 255–278, 2006.

2 Evan Czaplicki and Stephen Chong. Asynchronous functional reactive programming for
GUIs. In Proceedings of the 34th ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’13, pages 411–422, 2013.

3 Jonathan Edwards. Coherent reaction. In Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 925–932, 2009.



Stefan K. Muller and Umut A. Acar 3

4 Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the sec-
ond ACM SIGPLAN International Conference on Functional Programming, pages 263–273.
ACM, 1997.

5 Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: Language support for event-
driven programming. In Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’07, pages 134–143, New
York, NY, USA, 2007. ACM.


