
A graph model of data and workflow provenance

Umut Acar
Max-Planck Institute for Software Systems

Peter Buneman
University of Edinburgh

James Cheney
University of Edinburgh

Jan Van den Bussche
Hasselt University

Natalia Kwasnikowska
Hasselt University

Stijn Vansummeren
Université Libre de Bruxelles

Abstract

Provenance has been studied extensively in both database
and workflow management systems, so far with little
convergence of definitions or models. Provenance in
databases has generally been defined for relational or
complex object data, by propagating fine-grained an-
notations or algebraic expressions from the input to
the output. This kind of provenance has been found
useful in other areas of computer science: annotation
databases, probabilistic databases, schema and data in-
tegration, etc. In contrast, workflow provenance aims to
capture a complete description of evaluation – or enact-
ment – of a workflow, and this is crucial to verification
in scientific computation. Workflows and their prove-
nance are often presented using graphical notation, mak-
ing them easy to visualize but complicating the formal
semantics that relates their run-time behavior with their
provenance records. We bridge this gap by extending a
previously-developed dataflow language which supports
both database-style querying and workflow-style batch
processing steps to produce a workflow-style provenance
graph that can be explicitly queried. We define and
describe the model through examples, present queries
that extract other forms of provenance, and give an exe-
cutable definition of the graph semantics of dataflow ex-
pressions.

1 Introduction

A number of standard database provenance models
tailored to relational, complex-object or XML query
languages have emerged. These models include lin-
eage [9], where-provenance [3, 2], why-provenance [3,
4], and more recent innovations such as dependency-
provenance [7], how-provenance [13, 11], and prove-
nance traces [6]. These models have been presented in
a number of different ways and founded on several dif-
ferent motivations. Recently, further study has revealed

that these models share a great deal of structure once they
are defined in a common language and data model [8, 6].

Provenance models have also been developed for a va-
riety of workflow systems, such as Chimera [10], Tav-
erna [20], Kepler [1], Karma [24], and ZOOM [26];
also, many other systems such as PASS and PASOA em-
ploy similar ideas [14, 23]. These systems model and
record provenance as a directed acyclic graph that, in-
formally, describes the macroscopic computation steps
(e.g., whole program executions) performed in construct-
ing intermediate and final results. Recently, the Open
Provenance Model (OPM) [22] has been developed as a
consensus exchange format for representing provenance
graphs.

Workflow systems employ a much wider variety of
programming constructs than databases, including con-
currency, procedures, service calls, and queries to exter-
nal databases. However, these systems are seldom ac-
companied by formal specifications of their intended se-
mantics, with or without provenance. As a result, it can
be hard to understand provenance information produced
by a workflow system, since the meaning intended by the
implementer may not match the expectations of the user.
This is a particularly vexing problem because some users
and implementers might not even be aware of the possi-
bility of misinterpretation, leading to further confusion.

The scarcity of clear specifications of the semantics
and provenance behavior of workflow systems makes it
difficult to integrate database and workflow provenance
or compare provenance graphs generated by different
systems. Therefore, we believe that it is essential to study
the semantics of workflow provenance models and relate
them to existing models of database provenance.

To compare and unify these different techniques, we
need to define a common provenance model. Database
provenance models can be visualized as graphs. Where-
provenance, lineage, and dependency-provenance can be
visualized as bipartite graphs linking parts of the out-
put with parts of the input. How-provenance and why-

provenance are more complex, but can also be visualized
as directed acyclic graphs linking parts of the output to
parts of the input, where nodes are labeled with symbolic
algebraic operations. Graphs provide a natural common
formalism for workflow and database provenance.

We also need a common language that can express
both database queries and workflows. In this paper, we
use a core calculus for dataflows, called DFL, based on
the Nested Relational Calculus (NRC). DFL has been
previously introduced by Hidders et al. [16, 17] and we
also build upon some prior work on provenance in this
setting [19]. We develop a graphical model of prove-
nance for both database queries and simple workflows
in a uniform way. This should provide a foundation for
studying more complex workflow language features such
as nondeterminism, concurrency and while-loops.

The structure of the rest of this paper is as follows. In
Section 2 we review the dataflow calculus DFL. In Sec-
tion 3 we describe the structure of provenance graphs and
give examples showing how typical dataflows are trans-
lated to graphs. In Section 4 we describe the provenance
semantics of DFL programs, and give an executable, yet
still high-level implementation in Haskell. Section 5 dis-
cusses how to express queries over the graphs, partic-
ularly inspired by where- and and why-provenance in
databases, and outlines some future directions. Section 6
discusses related work and Section 7 concludes.

Note. Our graphical model is fundamentally very
similar to the trace model developed in prior, unpub-
lished work with Acar and Ahmed [6]. However, we
make a different contribution: namely, we feel our graph-
theoretic presentation is more widely accessible than
the syntactic traces and operational semantics rules em-
ployed to simplify proofs of their main results in [6].

2 Background

The dataflow language DFL [17] is an extension of the
Nested Relational Calculus (NRC) that includes atomic
values and functions. As we can only briefly introduce
DFL here due to space reasons, we encourage readers
unfamiliar with DFL and NRC to consult [5, 17] for more
details. In brief, the syntax of DFL is as follows:

e, e′ ::= x | let x = e in e′ | c | f(e1, . . . , en)
| πA(e) | 〈A1:e1, . . . , An:en〉 | empty?(e)
| True | False | if e then e1 else e2

| ∅ | {e} | e1 ∪ e2 | {e′ | x ∈ e} |
⋃
e

Here, c denotes a constant atomic data value, drawn from
a set D, and f denotes a function. Atomic data values
may be values of base types such as integers or booleans
or strings, but they may also be more complicated objects

such as images or data files. Functions include primitive
operations on basic data types, such as integer addition
and equality. Furthermore, functions can also represent
large computational steps such as external program or
service calls: for example, to model the first Provenance
Challenge workflow we might use base types such as
Image, Header, or WarpFile and function symbols such
as align warp : Image × Header × Image × Header →
WarpFile or reslice : WarpFile → Image × Header to
represent the macroscopic computation steps.

The remaining syntactic constructs above are standard
components of the Nested Relational Calculus: we in-
clude record and field projection operations, booleans
and conditionals, and set operations. We employ the syn-
tax {e′(x) | x ∈ e} for the “for-loop” or set comprehen-
sion operation which evaluates e to a set {v1, . . . , vn}
and returns the set of values {e′(v1), . . . , e′(vn)} ob-
tained by evaluating e′ with x bound to each vi. The
expression

⋃
e flattens a nested collection. The expres-

sion empty?(e) tests whether collection e is empty.
We will use ordered-pair syntax (e1, e2) to abbreviate

〈fst : e1, snd : e2〉, and write fst(e) or snd(e) instead of
πfst(e) or πsnd(e), respectively, for the first and second
projections of an ordered pair. We also assume a fixed,
finite set of attribute names Attr.

DFL and NRC are statically typed languages with an
arbitrary but fixed collection of atomic types, and an ar-
bitrary but fixed signature that assigns types to the con-
stants and function symbols [5]. The static typing disci-
pline ensures that expressions are always well-defined on
input values of the correct type. For ease of presentation
in what follows, we will ignore typing issues and silently
restrict attention to expressions and evaluations that are
well-defined in the conventional sense [5]. So whenever
we apply, for example, e1 ∪ e2, e1 and e2 are assumed to
correctly evaluate to sets.

3 Value, evaluation and provenance graphs

DFL expressions are normally evaluated over complex
values, which are nested combinations of atomic data
values d, tuples of complex values 〈A1 : v1, . . . , An :
vn〉, and sets of complex values {v1, . . . , vn}. As we
show in Section 3.1, we can easily represent complex
values as trees or (with sharing) as directed acyclic
graphs. Using such value graphs, we are going to rep-
resent the evaluation of a DFL expression by means of
a provenance graph in Section 3.3. A provenance graph
is a two-sorted graph, consisting of a value graph and an
evaluation graph (introduced in Section 3.2), that docu-
ments the evaluation of a program. Moreover, there is a
connection between the evaluation graph and the value
graph in that each evaluation node is linked to a value
node.

2

3.1 Value graphs
A value graph G is a directed acyclic graph (V,E) with
labels on the nodes and edges. The nodes are labeled
using the alphabet {{}, 〈〉, copy} ∪ D. The edges are
optionally labeled using the alphabet {elem} ∪ Attr. We
use the formula labl(n) to indicate that n has label l in G
and n l→ n′ to indicate that there is an edge (n, n′) with
label l in G.

To illustrate, the following graph represents the value
{〈A : 1, B : 2〉, 〈A : 1, B : 3〉}:

1

<>

{}
elem

elem

A

B
2

3

<>

A

B

We restrict our attention in what follows to legal value
graphs that can be constructed using the following rules:

c

<>{}

...

elem

elem A1

An

v

v

v

or

v

v

or

...

copyvor

The meaning of these patterns is that a value graph v
can be constructed from another valid graph by adding
new nodes and edges (shown using solid lines) linked to
some existing nodes (shown using dotted lines). Sharing
among the nodes of the value graph is allowed. Also, the
empty graph is valid and the union of two disjoint value
graphs is valid.

A tree-shaped value graph is called a value tree.
Clearly, one can canonically represent any complex value
by the root node of a value tree. Moreover, any value
graph can be converted to a value tree by duplicating
shared nodes and by merging copy nodes with their tar-
gets. In any value graph, any node from which the un-
raveling yields this canonical value tree, is said to also
represent the same complex value.

In what follows, we often say “n is a copy of n′ (in
G)” as shorthand meaning that n is a copy node and its
(sole, unlabeled) outgoing edge is n′.

3.2 Evaluation graphs
An evaluation graph G = (V,E) is a labeled directed
acyclic graph with node labels drawn from the set

{x, c, f, 〈〉, πA, letx, if, ∅, {},∪,
⋃
, forx}

and optional edge labels drawn from the set

{A, head, body, test, then, else, 1, 2, . . .}

As with value graphs, we write labl(m) to indicate that
node x has label l and m l→ m′ to indicate that nodes m
and m′ are linked by an edge labeled l.

A valid evaluation graph is one that can be constructed
using the following rules:

...

A1

An

ce
e

{}

<>
e

e

xor

or

or

letx

head

body

e

e

or

...

1

n

e

f
e

or

!or "

1

2

e

e

or "eor

or

if

test

then

e

e

forx

head

body

e

e

e
body...

if

test

else

e

e
or

!Aeor

or empty?eor

where, again, the meaning of each pattern is that we can
extend the graph by adding new nodes and edges (shown
using solid lines) by linking to existing nodes (shown us-
ing dotted lines). The existing nodes need not be dis-
joint, so sharing can occur in evaluation graphs. Also,
the empty graph is valid and the union of two disjoint
graphs is valid.

Finally, we introduce the following terminology: A
node labeled let x or for x is said to bind x. We say that
a variable node ex labeled by x is in the scope of a node
e that binds x, if there is a path from e to ex that does not
pass through another node that binds x. We require each
variable node to be in the scope of at most one binding
node.

For example, the following is a valid evaluation graph:

if

test

else

1

2

=

x

1

1

2

*

5

Essentially, this graph says that a value was obtained by
doing a conditional test x = 1 which failed, and then
evaluating the else-branch to return x∗5. Note that there
is no information about the actual value of x or the result
of the computation, although we can infer that x 6= 1
holds.

3.3 Provenance Graphs
A provenance graph G = (V,E, val) is a directed
acyclic graph with nodes and edges labeled with either

3

(a)

R

x

fst

copy

< >
snd =copy

1

copy 2

1

1

{ }

if

True test

{ }

then

x

fst

copy

< >

snd
=

copy 1

copy
2

1

2 empty if

False test

{ }
else

for xcopy head

copy

body

copy body

{ }

U{ }

S

y

fst

copy snd
+

copy

1
copy

2

for ycopy head

2

body

{ }
let S

head

{ }

body

let R

head

copy

body

1

2
{ }

1

2
{ }

copy

(b)

RS

x

y

=copy
1

copy

2

1

1

{ }
if

True
test

{ }
then

for y

copy

head

copy
body

{ }

U
{ }

empty?

{ }

1

empty
if

False test

{ }

else

x

y

=

copy
1

copy

2
2 empty

if

False test

{ }
else

for y
head

copy
body

U{ } empty?{ }
1

{ }

ifTrue
test

{ }

then

for xcopy
head

copy

body

copy
body

{ }

U{ }

let S

head { }
body

let R

head

copy
body copy

Figure 1: Examples (a) SELECT a+b FROM R WHERE a=b, where R = {(1, 2), (1, 1)} and (b) R MINUS S
where {R = {1, 2} and S = {1}. Ovals are value nodes; boxes are evaluation nodes; gray edges are value-graph
edges.

value or evaluation labels, such that: 1. V = VV] VE ,
2. prov is a partial injective function from VV to VE

so that each evaluation node e has a unique value node
val(e), 3. G is a value graph if we disregard the eval-
uation graph structure, and 4. G is an evaluation graph
if we merge each pair of nodes (e, val(e)) and disregard
the value structure. In the following examples, by con-
vention, we highlight parts of the input expression that
are considered “inputs” using gray boxes.

Here is a simple example, showing the computation
3 + 4 = 7:

+
3 1

4
2 7

Here is a more complicated example, showing the
evaluation of expression π2(3 + 4 , 5) = 5 involving
constructing a pair and then selecting the second argu-
ment:

+
3 1

4

2

< >

7

1

5
2

snd
< >

1

2
copy

Finally, here is a larger example demonstrating
let-binding, showing the evaluation of an expression
let x = 3 in let y = 4 in x ∗ x+ y ∗ y.

x

y

*
copy 1

2

3

*
copy

1
2

4

+

9 1

16
2

let y

head

25 body

let x

head

copy

body
copy

Figure 1(a) and (b) are two larger examples, correspond-
ing to simple SQL queries.

Given a provenance graph G and an evaluation node
e, there is a natural notion of (G, e) being locally consis-
tent, with the intuition that the computation depicted in
the part of the evaluation graph reachable from ematches
the assignment of value nodes to evaluation nodes by the
val-edges. The graphs used as examples so far are all
consistent in this sense; however, the following graphs
are inconsistent:

+ 5

2

2

if copy

2

True test

else

The left example is obviously silly: the claimed result of
a function should be consistent with the function’s mean-
ing. The right example is more subtle: the labels of the
branches in conditional nodes need to match the boolean
value of the test.

Moreover, we expect the evaluation graph to be glob-
ally consistent, in the sense that the whole trace is an
“unfolding” of the evaluation of a particular expression
e. All of the graphs we have seen so far are globally con-

4

sistent with an expression. However, the following graph
is globally inconsistent:

The inconsistency here is between the two evaluation
bodies of the for-loop: the body of a comprehension can-
not be both a constant 3 and a constant 4. In a globally
consistent graph the control flow leading to different val-
ues for different iterations must be made explicit.

It is possible to enforce local consistency using first-
order constraints on the provenance graph. Moreover,
global consistency can also be defined using first-order
constraints by induction on the structure of expressions
e. We omit the actual constraints due to space limits.

4 The provenance graph semantics

In this section we will show how to construct a consistent
provenance graph by evaluating DFL expressions to con-
struct both a value and evaluation graph, with appropriate
links. Figure 2 illustrates the semantics schematically us-
ing some graph rewriting rules, where the rounded boxes
describe the expression structure. Each rule schemati-
cally shows how an expression locally evaluates to val-
ues and expression nodes. These rules can be applied to
build a provenance graph “bottom-up”.

4.1 An executable definition
Defining an algorithm to actually construct a provenance
graph can be tricky due to the large number of de-
tails we need to manage. We present a definition us-
ing Haskell [18], a functional language that provides
sophisticated facilities for defining side-effecting oper-
ations such as those involved in building a graph. Us-
ing these features we can define a function that traverses
an expression, evaluates it and constructs the associated
provenance graph in only a few hundred lines of code.
Haskell programs are precise definition that is still rela-
tively readable and clear. Moreover, it is an executable
specification that can be used to generate small examples
and experiment with alternative definitions.

In general while evaluating an expression with free
variables, we need to keep track of the values associated
with variables, so we will introduce a little more notation
to help with this bookkeeping.

For a finite set X of variables, a value assignment for
X is a mapping σ : X → Val that assigns to each x ∈ X
a complex value. We can model value assignments in a
provenance graph G as follows. Let γ : X → GE be
a function mapping variable names to variable nodes of

cc c

ff f(v1,...,vn)

1

n
vn

v1

...

1

n
vn

v1

...
letx

head

body

v

ex

head

body

v

ex

letx copy

!Ai<>

A1

An
vn

v1

...
<>

A1

An
v

v

...

!Ai...
vi copy

...
...

vi

<>

A1

An
vn

v1

...

A1

An
vn

v1

... <> <>

A1

An

if

e2

e1

True

e1

True

if

test

then

test

then

else

if

e2

e1

False

e2

True

if

test

else

test

then

else

empty?{} {} empty? False

...

elem

elem

v

v

...

elem

elem

v

v

copy

copy

! !!

{}

"

...

elem

elem

v

v

{}

...

elem

elem

v

v

{}

v

elem

v {}{}

{}"

...

v

v

...

v

v

elem

elem

{}

elem

elem

{}

elem

elem

...

...

...

empty?{} {} empty? True

forx

head

body

{}

ex

...

elem

elem

vn

v1

head

body

{}

ex

...

elem

elem

vn

v1

bodyex

forx {}

elem

elem

...

...

elem

elem

v

v

{}

...

elem

elem

v

v

{}

elem

elem

{} !

...

elem

elem

v

v

{}

...

elem

elem

v

v

{}

elem

elem

{} {}!

elem

elem

...
...

...

Figure 2: Graph rewriting rules for constructing prove-
nance graphs

5

the evaluation graph of G, such that for each x ∈ X , we
have labx(γ(x)). Then for each x, the value node γ(x)
corresponds to a complex value. In particular, given an
ordinary assignment σ : X → Val, we can always con-
struct a graph G that defines value nodes for the values
of σ(x) and whose evaluation nodes correspond exactly
to the variables in X .

In Haskell, it is more convenient to represent the graph
as a collection of finite maps from nodes to datatypes
that we shall call constructors. In our implementation, a
single node will correspond to a pair (m,n) of an ex-
pression and value node in the previous development.
We map each node to a value constructor and optionally
an evaluation constructor. Constructors encode both the
node and edge labels. For example, we use a constructor
EIf True n1 n2 to represent an if node with test-
edge to n1, a test value of True, and then-edge to n2.
This approach builds many of the basic validity prop-
erties of provenance graphs into the Haskell type sys-
tem, making it easier to avoid trivial bugs. Of course, the
constructor-based graph can be translated to the explic-
itly edge-labeled graphs used earlier. Figure 8 shows the
basic datatypes for nodes, variables, contexts, and eval-
uation and value constructors in Haskell. Note that for
simplicity we use Haskell’s built-in list type for collec-
tions; we also restrict attention to ordered pairs rather
than general records. These differences are inessential.

We also employ a feature of Haskell called mon-
ads [21] to structure the computation of the provenance
graph for a given expression. Basically, a monad is a
generic type M a. A value of type M a is a computation
that produces a value of type a and may have some side-
effects. Because Haskell is a pure functional language,
all side-effects need to be encapsulated within a monad.
Monads can also handle contextual information such as
tracking the current values of variables.

Our monad will employ the type:

type M a = Ctx -> Int -> Graph ->
(Int,Graph,a)

Here, Ctx represents the variable context, the Int param-
eter/result is a counter used for generating fresh node ids,
and the Graph parameter/result is the graph being built.
The definition of the monad type and its operations in
Haskell is slightly different for technical reasons. For
presentation reasons we suppress these differences.

A monad is always equipped with two operations, here
called “>>=” (or “bind”) and “return”. The “return” op-
eration simply takes a value of type a and produces a
monad returning that value:

return :: a→M a

return a = λγ.λi.λG.(i, G, a)

Furthermore, the “bind” operation takes an M a (i.e., a
computation producing values of type a) and a function
from a toM b and produces a computationM b returning
a value of type b. Its definition is as follows:

>>= :: M a→ (a→M b)→M b

f >>= g = λγ.λi.λG.

let (i′, G′, a) = f γ i G in (g a) γ i′ G′

Finally, we define a number of operations that allow us
to read the current state of the computation or perform
a side-effecting operation. We give some examples in
detail and then just describe the remaining operations.

To read the current value of a variable in the context,
we define the lookup operation:

lookup :: Var→M Node

lookup x = λγ.λi.λG.(i, G, γ(x))

To create a fresh node, we define the following monadic
operation that creates a new node using the current index
and increments the index:

fresh :: M Node

fresh = λγ.λi.λG.(i+ 1, G,Node(i))

Similar operations can be defined to access the current
context, add a variable binding to the context, and so
on. These operations are shown in Figure 3. We also
include monadic versions of primitive functions (interp)
and complex operations such as flattening (

⋃
). The oper-

ation link econ vcon extends the graph with a new node
n bound to the constructors econ and vcon, returning n.

Figures 4, 6 and 7 show how to evaluate an expres-
sion in a provenance graph, producing a value node in
an augmented provenance graph. The helper functions
J−K† and J−K∗ shown in Figure 5 help simplify the def-
inition. First, JeK† simply evaluates an expression e to
its value node and also returns the node’s constructor.
Second, JeK∗x∈vs evaluates e repeatedly, with x bound in
turn to each element of vs. The examples in Figure 1
were generated using the Haskell implementation and the
graphviz Unix tool1.

5 Querying the provenance graph

The provenance graph is a relational structure, and as
such there are a wide variety of languages available for
querying the graph, ranging from simple path or reach-
ability queries, to SQL-like relational queries, to more
expressive languages supporting recursive queries, such
as Datalog. Thus, in a sense the problem of querying

1http://www.graphviz.org

6

data Node = Node Int deriving (Eq,Ord,Show)
type Var = String
type Ctx = Var -> Node
data VCon = VInt Int | VBool Bool | VPair Node Node | VSet [Node] | VCopy Node
data ECon = EInt Int | EFun String [Node] | ELet Var Node Node | EVar Var

| EPair Node Node | EProj Int Node | EBool Bool | EIf Bool Node Node
| EEmpty | ESng Node | EUnion Node Node
| EFor Node Var [Node] | EFlatten Node

data Graph = Graph {emap :: Map Node (Maybe ECon), vmap :: Map Node VCon}

Figure 8: Haskell code defining provenance graphs. The type Map a b consists of finite maps from type a to b, from
the Haskell standard library.

bindVar :: Var→ Node→M a→M a

getVCon :: Node→M VCon

link :: ECon→ VCon→M Node

interp :: String→ VCon→M VCon

flatten :: [Node]→M [Node]

Figure 3: Graph monad operations

the provenance graph is already solved by known tech-
niques for querying arbitrary graphs that happen to be
provenance.

However, it still seems to be a challenge to define
known forms of provenance in databases in terms of
provenance graphs. In this section, we sketch prelimi-
nary ideas towards this goal, using Datalog over the raw
provenance graphs.

In order to define forms of where-provenance and
why-provenance, we need a partial orders on evaluation
nodes. We start by ordering the evaluation nodes in G
based on the following two orders:

1. Child(n1, n2) if n2
l→ n1 (i.e., there is an edge

from n2 to n1)
2. Left(n1, n2) if

• n1 is the test-node of a conditional and n2 is
one of the branches

• n1 is the head-node of a let or for-node n and
n2 is a body-node of n

The partial order Before is defined as follows:

Below(e, e) ← Eval(e)
Below(e, f) ← Below(e, g),Child(g, f)
Before(e, f) ← Below(e, f)
Before(e, f) ← Before(e, e′),Below(e′, g),

Left(g, h),Before(f, h)

where in the first rule we ensure safety by constraining e

J−K :: Expr→M Node

JxK = lookup x
Jlet x = e1 in e2K = Je1K >>= λn1.

bindVar x n1 Je2K >>= λn2.
link(ELet x n1 n2) (VCopy n2)

JiK = link(EInt i) (VInt i)

Jf(e)K = JeK† >>= λ(n, v).
interpf (v) >>= λv′.
link(EFun f (n)) (v′)

Figure 4: Monadic semantics for building provenance
graphs, part 1 (variables, let, primitive functions)

J−K† :: Expr→M (Node,VCon)

JeK† = JeK >>= λn.
getVCon(n) >>= λv.
return (n, v)

J−K∗x∈[] = return []

JeK∗x∈n0:ns = bindVar x n0 JeK >>= λn′0.

JeK∗x∈ns >>= λns′.
return (n′0 : ns′)

Figure 5: Helper functions JeK† and JeK∗x∈vs.

to be an evaluation node using a predicate Eval(e) that
lists all evaluation nodes.

We also define the Copy relation on value nodes as the
reflexive, transitive closure of the copy edge relation. We
use the predicate V alue(n) in the first rule to constrain
n to be a value node, ensuring safety:

Copy(n, n) ← V alue(n)

Copy(n, n′) ← Copy(n, n′′), n′′
copy→ n′

We will define where-provenance and why-
provenance queries on pairs (e, v) such that v is
reachable by a directed path (possibly including
copy-links) from e. We will call such pairs instances.

7

J(e1, e2)K = Je1K >>= λn1.
Je2K >>= λn2.
link(EPair(n1, n2)) (VPair(n1, n2))

Jπi(e)K = JeK† >>= λ(n,VPair(n1, n2))
link(EProj i n) (VCopy ni)

JbK = link(EBool b) (VBool b)

Jif e then e1 else e2K = JeK† >>= λ(n,VBool b).
if b
then Je1K >>= λn′.
link(EIf True n n′) (VCopy n′)

else Je2K >>= λn′.
link(EIf False n n′) (VCopy n′)

Figure 6: Monadic semantics for building provenance
graphs, part 2 (pairs, conditionals)

J∅K = link(EEmpty) (VSet [])

J{e}K = JeK >>= λn.
link(ESng n) (VSet [n])

Je1 ∪ e2K = Je1K† >>= λ(n1,VSet(vs1)).

Je2K† >>= λ(n2,VSet(vs2)).
link(EUnion n1 n2) (VSet(vs1 ++ vs2))

J{e | x ∈ e0}K = Je0K >>= λ(n0,VSet(ns)).
JeK∗x∈vs >>= λns′.
link(EFor n0 x ns

′) (VSet ns′)

J
S
eK = JeK >>= λ(n,VSet(ns)).

flatten(ns) >>= λns′.
link (EFlatten n) (VSet ns′)

Figure 7: Monadic semantics for building provenance
graphs, part 3 (collections)

5.1 Where-provenance
We now can define a form of where-provenance on in-
stances (e, v) as follows:

Where((e1, v1), (e2, v2)) ← Before(e1, e2),
Copy(v2, v1)

Intuitively, this says that the where-provenance of the
value v2 returned by the evaluation ending at e2 is the
same as that of the value v1 returned by e1. Clearly, there
should be a unique least (e1, v1) with respect to Before
so we can define the where-provenance as that instance
(e1, v1). This definition relies on the fact that our prove-
nance graph already corresponds closely to the high-
level view of where-provenance defined via annotation-
propagation in previous work [3, 2]. One important dif-
ference is that here, we can refer to intermediate steps in
the provenance graph.

5.2 Why-provenance

Why-provenance was defined in [3] using witnesses.
There, a witness to the existence of a part p of the output
of a query Q on input data d was defined as a subtree of
the input d such that rerunning Q on the subtree still pro-
duces output part p. We generalize this idea as follows.
Let G be a provenance graph with a distinguished eval-
uation node r whose value is v. Let U be a connected
subset of the result value nodes that contains v. Then a
witness to U in G is a consistent subgraph of G that con-
tains r and U . The why-provenance of V is then the set
of all minimal witnesses to U in G.

Alternatively, we could give a low-level definition that
traverses the graph to construct a witness starting from
a set of output value nodes, following similar lines to
the low-level definition of Where above. We omit the
details; the main differences are in rules for conditionals
and primitive functions where we continue tracking the
dependencies of the test or input values respectively.

5.3 Discussion

This discussion suggests a number of interesting obser-
vations and questions which we will not attempt to re-
solve here, including:
• The first definition of Where appears equivalent to

the where-provenance model of [2]. Can we make this
connection precise? Likewise, can we formally relate
the why-provenance subgraphs to definitions of why-
provenance or lineage for NRC (e.g. [11])?
• The above definitions characterize where-

provenance structurally by following a chain of
copies from the input to the output (or vice versa). This
exhibits a symmetry between querying the provenance
graph “forward” vs. “backward”. Is this a unique feature
of where-provenance or are there other provenance
queries that have this property?
• In some prior work (e.g. [2]), forms of provenance

have been defined by translating NRC queries to queries
that explicitly manage their own provenance informa-
tion. Is this possible for provenance graphs?
• We explored a number of design choices that could

be revisited. For example, we considered treating let
transparently and avoiding using explicitly labeled vari-
able nodes. Another controversial choice was the use of
copy-links rather than directly sharing value nodes. Are
these differences important, and how can we determine
this?
• How should updates be modeled?
We conclude this section with some sheer speculation.
Sensible provenance queries Consider all queries on

provenance graphs expressible in, say, relational calculus
or Datalog. Clearly, this includes many strange queries

8

that test properties of the graph that seem irrelevant to
provenance. For example, a query might select all value
nodes that appear exactly three times in the graph, or all
graphs that contain fewer than seventeen nodes, or all
graphs such that function f is called an even number of
times. Is there a natural characterization of “sensible”
provenance queries?

Provenance query answerability Consider the fol-
lowing problem: given two provenance graph queries
q1, q2, can we answer q2 using the results of q1 (without
access to the original graph, expression or input data)?
If so, it is reasonable to say that q1 is more general than
q2. This problem is an instance of the problem of an-
swering queries using views, which has been studied for
relational and XML databases. Can these results be ap-
plied or adapted to provenance queries?

Query rewriting and provenance query equiva-
lence Many equivalent queries become inequivalent in
the provenance graph semantics — for example, union
is no longer commutative. Does this matter, or is it ac-
ceptable to optimize queries using ordinary equivalence
rules? Under what conditions is this reasonable?

Efficient provenance querying Provenance graphs
may be too large to construct or retain in practice. Given
a provenance graph query q, can we compute the answer
to q more efficiently and without materializing the full
provenance graph? Can we compute provenance graphs
“lazily” or for just a part of the result, in response to a
query, rather than “eagerly” computing the whole graph?

6 Related Work

We have attempted to remain close to de facto stan-
dards for visualizing provenance as graphs, particularly
the Open Provenance Model [22], which distinguishes
between “process” (evaluation) and “artifact” (value)
nodes. However, we have not included other aspects of
OPM and have not tried to make our graphs fit OPM ex-
actly. Collections are not modeled directly in OPM 1.0,
although a proposal for describing the provenance of col-
lections in OPM is under development [15]. OPM is an
exchange and representation format for provenance in-
formation and so some of the the semantic issues we in-
vestigate are outside its scope.

Semantics and models of provenance have been stud-
ied in formal detail for some systems. Sroka et al. [25]
develop a semantics for Taverna workflows based on a
core language similar to NRC over lists, but including
implicit coercions from elements to collections and also
incorporating operations such as zip that are not express-
ible in plain NRC. Missier et al. [20] discuss lightweight
lineage annotations for Taverna workflows but does not
fully detail how to the full language presented in [25].

Graphical notations for provenance have been used
extensively in many systems. Recent work of inter-
est in some of these systems includes work on consis-
tency and optimization for user views (abstractions) of
provenance graphs [26] and efficiently representing and
storing provenance graphs over nested collections [1].
Again, however, these papers focus on structural as-
pects of provenance graphs as produced by some work-
flow system, whereas we are studying the relationship
between a provenance graph and the computation per-
formed by the system.

Our work is inspired partly by “provenance traces” [6],
an approach to provenance for NRC in which evaluation
of expressions yields both a value and a “trace”, or de-
tailed record of evaluation. Traces in that work are com-
plete in the sense that they can be used to replay the
computation under arbitrary changes to the input; our
provenance graphs do not try to support replay under
arbitrary changes, but may therefore be more compact.
Moreover, our provenance graphs explicate the relation-
ship between workflow and database provenance models,
a question not addressed in [6].

Another closely related line of work is on the NRC-
based dataflow language DFL, starting with Hidders et
al. [17]. Hidders et al. [16] developed a run seman-
tics for dataflow calculus programs along with a sketch
of how to extract provenance from runs. Subsequently
Kwasnikowska and van den Bussche [19] showed how
to represent the run semantics using OPM. This work
also modeled nondeterministic service (external func-
tion) calls and modeled procedures using OPM accounts.
These refinements have been left out in our presentation
but can easily be handled. Our work improves on this ap-
proach by directly defining a provenance graph seman-
tics that seems closer to typical workflow provenance,
and avoiding some technical complications involved in
the previous approach, particularly the use of paths to re-
fer to parts of values and expressions indirectly. On the
other hand, our pervasive use of freshly generated graph
nodes introduces complications of its own, which we
have addressed using the Haskell monadic programming
style. We also discuss specific provenance queries de-
fined using Datalog queries on the provenance graph, al-
though we only have preliminary results and many open
questions are evident.

Although the semantics we propose here may not be
universally acceptable or usable off-the-shelf in these
other settings, we believe the methods we outline are
re-usable. In particular, the idea of using Haskell-style
monads to define a precise semantics is very flexible,
since monads can incorporate many other kinds of side-
effects besides fresh node identifier generation. It may be
worthwhile to model the provenance semantics of more
realistic workflow languages in Haskell, facilitating di-

9

rect comparisons of the behavior and provenance of dif-
ferent workflow languages.

7 Conclusions

Although provenance has been studied in both database
and workflow settings for more than a decade, little has
been done to relate the approaches. In this paper we
make two contributions in this direction, in the con-
text of the previously-introduced dataflow calculus DFL.
First, we detail a semantics that evaluates dataflow calcu-
lus expressions to provenance graphs containing values,
evaluation nodes, and links showing how the expression
evaluated, and we discuss interesting kinds of queries
on the resulting structure, related to where-provenance
and why-provenance in databases. Second, we present a
concise and precise formal version of this model imple-
mented using Haskell, a high-level functional language.

We believe our work helps bridge a gap between
the theoretical approaches that so far have largely been
employed for database provenance and the practical,
but sometimes loosely-specified techniques developed in
workflow systems. We also identified a number of inter-
esting research questions concerning where- and why-
provenance queries over the provenance graph and their
relationships to these forms of provenance in databases.
We are investigating these in ongoing work. Although
there is still room for debate about the particular design
choices made in our approach, our formal model at least
makes it easier to hold such a debate, and to experiment
with alternatives.

Acknowledgments We have discussed ideas related to
this work with Amal Ahmed. This work has been sup-
ported by EPSRC grant EP/F028288/1.

References
[1] ANAND, M. K., BOWERS, S., MCPHILLIPS, T., AND

LUDÄSCHER, B. Efficient provenance storage over nested data
collections. In EDBT (New York, NY, USA, 2009), ACM,
pp. 958–969.

[2] BUNEMAN, P., CHENEY, J., AND VANSUMMEREN, S. On the
expressiveness of implicit provenance in query and update lan-
guages. ACM Transactions on Database Systems 33, 4 (Novem-
ber 2008), 28.

[3] BUNEMAN, P., KHANNA, S., AND TAN, W. Why and where: A
characterization of data provenance. In ICDT (2001), no. 1973 in
LNCS, Springer, pp. 316–330.

[4] BUNEMAN, P., KHANNA, S., AND TAN, W. On propagation
of deletions and annotations through views. In PODS (2002),
pp. 150–158.

[5] BUNEMAN, P., NAQVI, S. A., TANNEN, V., AND WONG, L.
Principles of programming with complex objects and collection
types. Theor. Comp. Sci. 149, 1 (1995), 3–48.

[6] CHENEY, J., ACAR, U. A., AND AHMED, A. Provenance traces.
CoRR abs/0812.0564 (2008).

[7] CHENEY, J., AHMED, A., AND ACAR, U. A. Provenance as
dependency analysis. In DBPL 2007 (Vienna, Austria, Septem-
ber 2007), M. Arenas and M. I. Schwartzbach, Eds., no. 4797 in
LNCS, Springer-Verlag, pp. 139–153.

[8] CHENEY, J., CHITICARIU, L., AND TAN, W. C. Provenance
in databases: Why, how, and where. Foundations and Trends in
Databases 1, 4 (2009), 379–474.

[9] CUI, Y., WIDOM, J., AND WIENER, J. L. Tracing the lineage of
view data in a warehousing environment. ACM Trans. Database
Syst. 25, 2 (2000), 179–227.

[10] FOSTER, I., VOCKLER, J., WILDE, M., AND ZHAO, Y.
Chimera: A virtual data system for representing, querying, and
automating data derivation. In SSDBM (July 2002), pp. 1–10.

[11] FOSTER, J. N., GREEN, T. J., AND TANNEN, V. Annotated
XML: queries and provenance. In PODS (2008), pp. 271–280.

[12] FREIRE, J., KOOP, D., AND MOREAU, L., Eds. IPAW (2008),
vol. 5272 of Lecture Notes in Computer Science, Springer.

[13] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Prove-
nance semirings. In PODS (2007), ACM, pp. 31–40.

[14] GROTH, P., LUCK, M., AND MOREAU, L. A protocol for
recording provenance in service-oriented grids. In OPODIS ’04
(2004).

[15] GROTH, P., MILES, S., MISSIER, P., AND MOREAU, L. A
proposal for handling collections in the open provenance model,
2009.

[16] HIDDERS, J., KWASNIKOWSKA, N., SROKA, J.,
TYSZKIEWICZ, J., AND VAN DEN BUSSCHE, J. A formal
model of dataflow repositories. In DILS (2007), vol. 4544 of
LNCS, Springer, pp. 105–121.

[17] HIDDERS, J., KWASNIKOWSKA, N., SROKA, J.,
TYSZKIEWICZ, J., AND VAN DEN BUSSCHE, J. DFL: A
dataflow language based on petri nets and nested relational
calculus. Inf. Syst. 33, 3 (2008), 261–284.

[18] HUTTON, G. Programming in Haskell. Cambridge University
Press, 2007.

[19] KWASNIKOWSKA, N., AND VAN DEN BUSSCHE, J. Mapping
the NRC dataflow model to the open provenance model. In Freire
et al. [12], pp. 3–16.

[20] MISSIER, P., BELHAJJAME, K., ZHAO, J., ROOS, M., AND
GOBLE, C. A. Data lineage model for taverna workflows with
lightweight annotation requirements. In Freire et al. [12], pp. 17–
30.

[21] MOGGI, E. Notions of computation and monads. Inf. Comput.
93, 1 (1991), 55–92.

[22] MOREAU, L., FREIRE, J., FUTRELLE, J., MCGRATH, R. E.,
MYERS, J., AND PAULSON, P. The open provenance model: An
overview. In Freire et al. [12], pp. 323–326.

[23] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In
USENIX ATC (June 2006), USENIX, pp. 43–56.

[24] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. Karma2:
Provenance management for data-driven workflows. Int. J. Web
Service Res. 5, 2 (2008), 1–22.

[25] SROKA, J., HIDDERS, J., MISSIER, P., AND GOBLE, C. A
formal semantics for the taverna 2 workflow model. Journal of
Computer and System Sciences In Press, Corrected Proof (2009).

[26] SUN, P., LIU, Z., DAVIDSON, S. B., AND CHEN, Y. Detect-
ing and resolving unsound workflow views for correct prove-
nance analysis. In SIGMOD (New York, NY, USA, 2009), ACM,
pp. 549–562.

10

