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ming. As an adaptive program executes, the underlying system represents the data and control

dependences in the execution in the form of a dynamic dependence graph. When the input to the

program changes, a change propagation algorithm updates the output and the dynamic dependence

graph by propagating changes through the graph and re-executing code where necessary. Adaptive

programs adapt their output to any change in the input, small or large.

We show that adaptivity techniques are practical by giving an efficient implementation as a
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Quicksort adapts its output in logarithmic time when its input is extended by one key.

To show the safety and correctness of the mechanism we give a formal definition of AFL, a call-
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and prove its correctness.

Categories and Subject Descriptors: D.1.0 [Programming Techniques]: General; D.1.1 [Pro-
gramming Techniques]: Applicative (Functional) Programming; D.3.0 [Programming Lan-
guages]: General; D.3.1 [Programming Languages]: Formal Definitions and Theory; F.2.0

[Analysis of Algorithms and Problem Complexity]: General; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Incremental computation, adaptive computation, dynamic

algorithms

This research was supported in part by National Science Foundation (NSF) grants CCR-9706572,

CCR-0085982, and CCR-0122581.

Authors’ addresses: U. A. Acar, Toyota Technological Institute, Chicago, IL; email: umut@tti-c.org;

G. E. Blelloch and R. Harper, Carnegie Mellon University, Pittsburgh, PA; email: {blelloch,rwh}@cs.

cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0164-0925/06/1100-0990 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006, Pages 990–1034.



Adaptive Functional Programming • 991

1. INTRODUCTION

Incremental computation concerns maintaining the input–output relationship
of a program as the input of a program undergoes changes. Incremental compu-
tation is useful in situations where small input changes lead to relatively small
changes in the output. In limiting cases, one cannot avoid a complete recompu-
tation of the output, but in many cases, the results of the previous computation
may be re-used to update output more quickly than a complete re-evaluation.

In this article, we propose adaptive functional programming as a technique
for incremental-computation. As an adaptive program executes, the underly-
ing system represents the data and control dependences in the execution via a
dynamic dependence graph. When the input to the program changes, a change-
propagation algorithm updates the dependence graph and the output by propa-
gating changes through the graph and re-executing code where necessary. The
input changes can take a variety of forms (insertions, deletions, etc.) and can
be small or large.

Our proposed mechanism extends call-by-value functional languages with a
small set of primitives to support adaptive programming. Apart from requiring
that the host language be purely functional, we make no other restriction on
its expressive power. In particular, our mechanism is compatible with the full
range of effect-free constructs found in ML. Our proposed mechanism has these
strengths:

—Generality. It applies to any purely functional program. The programmer
can build adaptivity into an application in a natural and modular way. The
performance can be determined using analytical techniques but will depend
on the particular application.

—Flexibility. It enables the programmer to control the amount of adaptivity.
For example, a programmer can choose to make only one portion or aspect of
a system adaptive, leaving the others to be implemented conventionally.

—Simplicity. It requires small changes to existing code. For example, the adap-
tive version of Quicksort presented in the next section requires only minor
changes to the standard implementation.

Our adaptivity mechanism is based on the idea of a modifiable reference (or
modifiable, for short) and three operations for creating (mod), reading (read), and
writing (write) modifiables. A modifiable enables recording the dependence of
one computation on the value of another. A modifiable reference is essentially
a write-once reference cell that records the value of an expression whose value
may change as a (direct or indirect) result of changes to the inputs. Any expres-
sion whose value can change must store its value in a modifiable reference; such
an expression is said to be changeable. Expressions that are not changeable are
said to be stable; stable expressions are not associated with modifiables.

Any expression that depends on the value of a changeable expression
must express this dependence by explicitly reading the contents of the mod-
ifiable storing the value of that changeable expression. This establishes a
data dependence between the expression reading that modifiable, called the
reader, and the expression that determines the value of that modifiable, the
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writer. Since the value of the modifiable may change as a result of changes
to the input, the reader must itself be deemed a changeable expression.
This means that a reader cannot be considered stable, but may only ap-
pear as part of a changeable expression whose value is stored in some other
modifiable.

By choosing the extent to which modifiables are used in a program, the
programmer can control the extent to which it is able to adapt to change.
For example, a programmer may wish to make a list manipulation pro-
gram adaptive to insertions into and deletions from the list, but not under
changes to the individual elements of the list. This can be represented in our
framework by making only the “tail” elements of a list adaptive, leaving the
“head” elements stable. However, once certain aspects are made changeable,
all parts of the program that depend on those aspects are, by implication, also
changeable.

The key to adapting the output to change of input is to record the dependen-
cies between readers and writers that arise during the initial evaluation. These
dependencies are maintained as a dynamic dependence graph where each node
represents a modifiable, and each edge represents a read whose source is the
modifiable being read and whose target is the modifiable being written. Also,
each edge is tagged with the corresponding reader, which is a closure. When-
ever the source modifiable changes, the new value of the target is determined
by re-evaluating the associated reader.

It is not enough, however, to maintain only this dependence graph connecting
readers to writers. It is also essential to maintain an ordering on the edges and
keep track of which edges (reads) are created during the execution of which
other edges (i.e., which edges are within the dynamic scope of which other
edges). We call this second relationship the containment hierarchy. The ordering
among the edges enables us to re-evaluate readers in the same order as they
were evaluated in the initial evaluation. The containment hierarchy enables
us to identify and remove edges that become obsolete. This occurs, for example,
when the result of a conditional inside a reader takes a different branch than the
initial evaluation. One difficulty is maintaining the ordering and containment
information during re-evaluation. We show how to maintain this information
efficiently using time-stamps and an order-maintenance algorithm of Dietz and
Sleator [1987].

A key property of the proposed techniques is that the time for change propa-
gation can be determined analytically. For example, we show in this article that
adaptive Quicksort updates its output in expected O(log n) time when its input
is changed by a single insertion or deletion at the end. In other work [Acar et al.
2004], we describe an analysis technique, called trace stability, for bounding the
time for change propagation under a class of input changes. The technique re-
lies on representing executions via traces and measuring the distance between
the traces of a program on similar inputs. A stability theorem states that the
time for change propagation can be bounded in terms of the traces for the inputs
before and after the change. The trace of an execution is the function call tree
of the execution augmented with certain information.
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2. RELATED WORK

Many techniques have been proposed for incremental computation. The idea
of using dependency graphs for incremental updates was introduced by
Demers et al. [1981] in the context of attribute grammars. Reps [1982] then
showed an algorithm to propagate a change optimally and Hoover [1987] gen-
eralized the approach outside the domain of attribute grammars. A crucial dif-
ference between this previous work and ours is that the previous work is based
on static dependency graphs. Although they allow the graph to be changed by
the modify step, the propagate step (i.e., the propagation algorithm) can only
pass values through a static graph. This severely limits the types of adaptive
computations that the technique handles [Pugh 1988]. Another difference is
that they don’t have the notion of forming the initial graph/trace by running
a computation, but rather assume that it is given as input (often it naturally
arises from the application). Yellin and Strom [1991] use the dependency graph
ideas within the INC language, and extend it by having incremental computa-
tions within each of its array primitives. Since INC does not have recursion or
looping, however, the dependency graphs remain static.

The idea behind memoization[Bellman 1957; McCarthy 1963; Michie 1968]
is to remember function calls and re-use them when possible. Pugh [1988],
and Pugh and Teitelbaum [1989] were the first to apply memoization to incre-
mental computation. One motivation behind their work was a lack of general-
purpose technique for incremental computation (previous techniques based
on dependence graphs applied only to certain computations). Since Pugh and
Teitelbaum’s work, other researchers investigated applications of memoization
to incremental computation [Abadi et al. 1996; Liu 1996; Liu et al. 1998; Heydon
et al. 1999, 2000; Acar et al. 2003]. The effectiveness of memoization critically
depends on the particular application and the kinds of input changes being con-
sidered. In general, memoization alone is not likely to support efficient updates.
For example, the best bound for list sorting using memoization is linear [Liu
1996].

Other approaches to incremental computation are based on partial evalu-
ation [Field and Teitelbaum 1990; Sundaresh and Hudak 1991]. Sundaresh
and Hudak’s [1991] approach requires the user to fix the partition of the in-
put that the program will be specialized on. The program is then partially
evaluated with respect to this partition, and the input outside the partition
can be changed incrementally. The main limitation of this approach is that it
allows input changes only within a predetermined partition [Liu 1996; Field
1991]. Field [1991], and Field and Teitelbaum [1990] present techniques for
incremental computation in the context of lambda calculus. Their approach is
similar to Hudak and Sundaresh’s but they present formal reduction systems
that use partially evaluated results optimally. We refer the reader to Rama-
lingam and Reps’ [1993] excellent bibliography for a summary of other work on
incremental computation.

The adaptivity techniques described in this article have been extended
and applied to some applications. Carlsson [2002] gives an implementation
of the ML library described in Section 4.9 in the Haskell language. Carlsson’s
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implementation does not support laziness, but ensures certain safety proper-
ties of adaptive programs. Acar et al. [2005a] present an ML library that en-
sures similar safety properties and combines the adaptivity mechanism with
memoization. As an application, Acar et al. [2004] consider the dynamic-trees
problem of Sleator and Tarjan [1983]. They show that an adaptive version of
the tree-contraction algorithm of Miller and Reif [1985] yields an asymptoti-
cally efficient solution to the dynamic-trees problem. Acar et al. [2005b] per-
form an experimental analysis of the approach by considering a broad set of
applications involving dynamic trees; the results show that the approach is
competitive in practice. Acar’s [2005] thesis describes a technique for combin-
ing adaptivity and memoization and shows that the combination can support
incremental updates (asymptotically) efficiently for a reasonably broad range of
applications.

3. OVERVIEW OF THE ARTICLE

In Section 4, we illustrate the main ideas of adaptive functional programming
in an algorithmic setting. We first describe how to implement an adaptive form
of Quicksort in the Standard ML language based on the interface of a mod-
ule implementing the basic adaptivity mechanisms. We then describe dynamic
dependence graphs and the change-propagation algorithm and establish an up-
per bound for the running time of change propagation. Based on this bound,
we prove the expected-O(log n) time bound for adaptive Quicksort under an
extension to its input. We finish by briefly describing the implementation of the
mechanism in terms of an abstract ordered list data structure. This implemen-
tation requires less than 100 lines of Standard ML code.

In Section 5, we define an adaptive functional programming language,
called AFL, which is an extension of a simple call-by-value functional lan-
guage with adaptivity primitives. The static semantics of AFL enforces prop-
erties that can only be enforced by run-time checks in our ML library. The
dynamic semantics of AFL is given by an evaluation relation that maintains
a record of the adaptive aspects of the computation, called a trace, which is
used by the change propagation algorithm. Section 6 proves the type safety of
AFL.

In Section 7, we present the change propagation algorithm in the frame-
work of the dynamic semantics of AFL. The change-propagation algorithm in-
terprets a trace to determine the correct order in which to propagate changes,
and to determine which expressions need to be re-evaluated. The change-
propagation algorithm also updates the containment structure of the com-
putation, which is recorded in the trace. Using this presentation, we prove
that the change-propagation algorithm is correct by showing that it yields
essentially the same result as a complete re-evaluation with the changed
inputs.

4. A FRAMEWORK FOR ADAPTIVE COMPUTING

We give an overview of our adaptive framework based on our ML library and
an adaptive version of Quicksort.
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Fig. 1. Signature of the adaptive library.

4.1 The ML Library

The signature of our adaptive library for ML is given in Figure 1. The library
provides functions to create (mod), to read from (read), and to write to (write)
modifiables, as well as meta-functions to initialize the library (init), change
input values (change) and propagate changes to the output (propagate). The
meta-functions are described later in this section. The library distinguishes be-
tween two “handles” to each modifiable: a source of type ’a mod for reading from,
and a destination of type ’a dest for writing to. When a modifiable is created,
correct usage of the library requires that it only be accessed as a destination
until it is written, and then only be accessed as a source.1 All changeable expres-
sions have type changeable, and are used in a “destination passing” style—they
do not return a value, but rather take a destination to which they write a value.
Correct usage requires that a changeable expression ends with a write—we de-
fine “ends with” more precisely when we discuss time stamps. The destination
written will be referred to as the target (destination). The type changeable has
no interpretable value.

The mod takes two parameters, a conservative comparison function and an
initializer. A conservative comparison function returns false when the values
are different but may return true or false when the values are the same. This
function is used by the change-propagation algorithm to avoid unnecessary
propagation. The mod function creates a modifiable and applies the initializer
to the new modifiable’s destination. The initializer is responsible for writing
the modifiable. Its body is therefore a changeable expression, and correct us-
age requires that the body’s target match the initializer’s argument. When
the initializer completes, mod returns the source handle of the modifiable it
created.

1The library does not enforce this restriction statically, but can enforce it with run-time checks. In

the following discussion, we will use the term “correct usage” to describe similar restrictions where

run-time checks are needed to check correctness. The language described in Section 5 enforces all

these restrictions statically using a modal type system.
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The read takes the source of a modifiable and a reader, a function whose body
is changeable. The read accesses the contents of the modifiable and applies the
reader to it. Any application of read is itself a changeable expression since the
value being read could change. If a call Ra to read is within the dynamic scope
of another call Rb to read, we say that Ra is contained within Rb. This relation
defines a hierarchy on the reads, which we will refer to as the containment
hierarchy (of reads).

4.2 Making an Application Adaptive

The transformation of a nonadaptive program to an adaptive program involves
two steps. First, the input data structures are made “modifiable” by placing
desired elements in modifiables. Second, the original program is updated by
making the reads of modifiables explicit and placing the results of each expres-
sion that depends on a modifiable into another modifiable. This means that
all values that directly or indirectly depend on modifiable inputs are placed
in modifiables. The changes to the program are therefore determined by what
parts of the input data structure are made modifiable.

As an example, consider the code for a standard Quicksort, qsort, and an
adaptive Quicksort, qsort’, as shown in Figure 2. To avoid linear-time concate-
nations, qsort uses an accumulator to store the sorted tail of the input list. The
transformation is done in two steps. First, we make the lists “modifiable” by
placing the tail of each list element into a modifiable as shown in lines 1, 2, 3 in
Figure 2. (If desired, each element of the list could have been made modifiable
as well; this would allow changing an element without changing the list struc-
turally). The resulting structure, a modifiable list, allows the user to insert and
delete items to and from the list. Second, we change the program so that the
values placed in modifiables are accessed explicitly via a read. The adaptive
Quicksort uses a read (line 21) to determine whether the input list l is empty
and writes the result to a destination d (line 23). This destination belongs to
the modifiable that is created by a call to mod (through modl) in line 28 or 33.
These modifiables form the output list, which now is a modifiable list. The func-
tion filter is similarly transformed into an adaptive one, filter’ (lines 6–18).
The modl function takes an initializer and passes it to the mod function with a
constant-time, conservative comparison function for lists. The comparison func-
tion returns true, if and only if both lists are NIL and returns false otherwise.
This comparison function is sufficiently powerful to prove the O(log n) bound
for adaptive Quicksort.

4.3 Adaptivity

An adaptive programs allows the programmer to change the input to the pro-
gram and update the result by running change propagation. This process can be
repeated as desired. The library provides the meta-function change to change
the value of a modifiable and the meta-function propagate to propagate these
changes to the output. Figure 3 illustrates an example. The function fromList
converts a list to a modifiable list, returning both the modifiable list and its last
element. The test function first performs an initial evaluation of the adaptive
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Fig. 2. The complete code for nonadaptive (left) and adaptive (right) versions of Quicksort.

Quicksort by converting the input list lst to a modifiable list l and sorting it
into r. It then changes the input by adding a new key v to the end of l. To update
the output r, test calls propagate. The update will result in a list identical to
what would have been returned if v was added to the end of l before the call
to qsort. In general, any number of inputs could be changed before running
propagate.

4.4 Dynamic Dependence Graphs

The crucial issue is to support change propagation efficiently. To do this, an
adaptive program, as it evaluates, creates a record of the adaptive activity in
the form of a dependence graph augmented with additional information re-
garding the containment hierarchy and the evaluation order of reads. The aug-
mented dependence graph is called a dynamic dependence graph. In a dynamic
dependence graph, each node represents a modifiable and each edge represents
a read. An evaluation of mod adds a node, and an evaluation of read adds an
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Fig. 3. Example of changing input and change propagation for Quicksort.

edge to the graph. In a read, the node being read becomes the source, and the
target of the read (the modifiable that the reader finished by writing to) be-
comes the target. Each edge is tagged with the reader function, represented as
a closure (i.e., a function and an environment that maps free variables to their
values).

When the input to an adaptive program changes, a change-propagation algo-
rithm updates the output and the dynamic dependence graph by propagating
changes through the graph and re-executing the reads affected by the change.
When re-evaluated with a changed source, a read can, due-to conditionals, take
a different evaluation path than before. For example, it can create new reads
and decide to skip previously evaluated reads. It is therefore critical for correct-
ness that the newly created reads are inserted into the graph and the previously
created reads are deleted from the graph. Insertions are performed routinely by
the read’s. To support deletions, dynamic-dependence graphs maintain a con-
tainment hierarchy between reads. A read e is contained within another read
e′ if e was created during the execution of e′. During change propagation, the
reads contained in a re-evaluated read are removed from the graph.

Containment hierarchy is represented using time-stamps. Each edge and
node in the dynamic dependence graph is tagged with a time-stamp correspond-
ing to its execution “time” in the sequential execution order. Time stamps are
generated by the mod and read expressions. The time stamp of an edge is gen-
erated by the corresponding read, before the reader is evaluated, and the time
stamp of a node is generated by the mod after the initializer is evaluated (the
time corresponds to the initialization time). Correct usage of the library re-
quires that the order of time stamps is independent of whether the write or

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.



Adaptive Functional Programming • 999

Fig. 4. The DDG for an application of filter’ to the modifiable list 2::3::nil.

mod generate the time stamp for the corresponding node. This is what we mean
by saying that a changeable expression must end with a write to its target.

The time stamp of an edge is called its start time and the time stamp of the
target of the edge is called the edge’s stop time. The start and the stop time of
the edge define the time span of the edge. Time spans are then used to identify
the containment relationship of reads: a read Ra is contained in a read Rb if
and only if the time span of the edge associated with Ra is within the time
span of the edge associated with Rb. For now, we will represent time stamps
with real numbers. We will, subsequently, show how the Dietz–Sleator Order-
Maintenance Algorithm can be used to maintain time stamps efficiently [Dietz
and Sleator 1987].

We define a dynamic dependence graph (DDG) as a directed-acyclic graph
(DAG) in which each edge has an associated reader and a time stamp, and
each node has an associated value and time stamp. We say that a node (and
corresponding modifiable) is an input if it has no incoming edges. Dynamic de-
pendence graphs serve as an efficient implementation of the notion of traces
that we formalize in Section 5. We therefore do not formalize dynamic depen-
dence graphs here. A more precise description of dynamic dependence graphs
can be found elsewhere [Acar et al. 2004].

As an example for dynamic dependence graphs, consider the adaptive filter
function filter’ shown in Figure 2. The arguments to filter’ consists of a
function f and a modifiable list l; the results consists of a modifiable list that
contains the items of l satisfying f. Figure 4 shows the dependence graph for
an evaluation of filter’ with the function (fn x => x > 2) and a modifiable
input list of 2::3::nil. The output is the modifiable list 3::nil. Although not
shown in the figure, each edge is also tagged with a reader. In this example,
all edges have an instance of reader (fn l’ => case l’ of ...) (lines 8–15 of
qsort’ in Figure 2). The time stamps for input nodes are not relevant, and are
marked with stars in Figure 4. We note that readers are closures, that is, code
with captured environments. In particular, each of the readers in our example
have their source and their target in their environment.

4.5 Change Propagation

Given a dynamic dependence graph and a set of changed input modifiables, the
change-propagation algorithm updates the DDG and the output by propagating
changes through the DDG. The idea is to re-evaluate the reads that are affected
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Fig. 5. The change-propagation algorithm.

by the input change in the sequential execution order. Re-executing the reads
in the sequential execution order ensures that the source of an edge (read) is
updated before the re-execution of that read. We say that an edge or read, is
affected if its source has a different underlying value.

Figure 5 shows the change-propagation algorithm. The algorithm maintains
a priority queue of affected edges. The queue is prioritized on the time stamp
of each edge, and is initialized with the out-edges of the changed input values.
Each iteration updates an edge, e, by re-evaluating the reader of e after deleting
all nodes and edges that are contained in e from both the graph and queue. After
the reader is re-evaluated the algorithm checks if the value of the target has
changed (line 10) by using the conservative comparison function passed to mod.
If the target has changed, the out-edges of the target are added to the queue to
propagate that change.

As an example, consider an initial evaluation of filter whose dependence
graph is shown in Figure 4. Now, suppose we change the modifiable input list
from 2::3::nil to 2::4::7::nil by creating the modifiable list 4::7::nil and
changing the value of modifiable l1 to this list, and run change propagation. The
leftmost frame in Figure 6 shows the input change. The change-propagation
algorithm starts by inserting the outgoing edge of l1, (l1, l3), into the queue.
The algorithm then removes the edge from the queue for re-execution. Before
re-evaluating the reader of the edge, the algorithm establishes the current
time-span as

〈
0.2

〉
–
〈
0.5

〉
, and deletes the nodes and edges contained in the edge

from the DDG and the queue (which is empty) (middle frame in Figure 6). The
algorithm then re-evaluates the reader (fn l’ => case l’ of ...) (8–15 in
Figure 2) in the time span

〈
0.2

〉
–
〈
0.5

〉
. The reader walks through the modifiable

list 4::7::nil as it filters the items and writes the head of the result list to l3 (the
right frame in Figure 6). This creates two new edges, which are given the time
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Fig. 6. Snapshots of the DDG during change propagation.

Fig. 7. The factorial function with a flag indicating the sign of the input.

stamps,
〈
0.3

〉
, and

〈
0.4

〉
. The targets of these edges, l7 and l8, are assigned the

time stamps,
〈
0.475

〉
, and

〈
0.45

〉
, matching the order that they were initialized

(these time stamps are otherwise chosen arbitrarily to fit in the range
〈
0.4

〉
–〈

0.5
〉
). Note that after change propagation, the modifiables l2 and l4 become

unreachable and can be garbage collected.
The change-propagation algorithm deletes the reads that are contained in a

re-evaluated read because such reads can be inconsistent with a from-scratch
evaluation of the program on the changed input. Re-evaluating such a read can
therefore change the semantics of the program, for example, it can cause the
result to be computed incorrectly, cause nontermination, or raise an exception
(assuming the language supports exceptions as ML does). As an example, con-
sider the factorial function shown in Figure 7. The program takes an integer
modifiable n and a boolean modifiable p whose value is true if the value of n is
positive and false otherwise. Consider evaluating the function with a positive
n with p set to true. Now change n to negative two and p to false. This change
will make the read on line 8 affected. With the change-propagation algorithm,
the read on line 8 will be re-evaluated and one will be written to the result mod-
ifiable. Since the read on 10 is contained in the read on line 8, it will be deleted;
note that re-evaluating this read will result in nontermination by calling fact
on negative two.
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4.6 Implementing Change Propagation Efficiently

The change-propagation algorithm described above can be implemented effi-
ciently using a standard representation of graphs, a standard priority-queue
algorithm, and an order-maintenance algorithm for time stamps. The imple-
mentation of the DDG needs to support deleting an edge, a node, and finding the
outgoing edges of a node. An adjacency list representation of DDG’s where the
outgoing edges of a node are maintained in a doubly linked list supports these
operations in constant time. To support the deletion of edges contained within
a given time interval efficiently, the implementation maintains a time-ordered,
doubly linked list of all edges. With this representation inserting and deleting
an edge, and finding the next edge all take constant time. The priority queue
should support addition, deletion, and delete-minimum operations efficiently.
A standard logarithmic-time priority-queue data structure is sufficient for our
purposes.

A more interesting question is how to implement time-stamp operations effi-
ciently. One option is to keep the time stamps in a list and tag each time stamp
with a real number while ensuring that the list is sorted with respect to tags.
The tag for a new time stamp is computed as the average of the tags of the
time stamps immediately before and immediately after it. Time stamps are
compared by comparing their tags. Unfortunately, this approach is not practi-
cal because it requires arbitrary precision real numbers. Another option is to
drop the tags and compare two time stamps by comparing their positions in the
list—the time stamp closer to the beginning of the list is smaller. This compar-
ison operation is not efficient because it can take linear time in the length of
the list. Another approach is to assign an integer rank to each time stamp such
that nodes closer to the beginning of the list have smaller ranks. This enables
constant time comparisons by comparing the ranks. The insertion algorithm,
however, needs to some re-ranking to make space for a time stamps that is
being inserted between two time stamps whose tags differ by one. Using in-
teger ranks, Dietz and Sleator [1987] give two efficient data structures, called
order-maintenance data structures, for maintaining time stamps. The first data
structure performs all operations in amortized constant time, the second more
complicated data structures achieves worst-case constant time.

4.7 Performance of Change Propagation

We show an upper bound on the running time of change propagation. As dis-
cussed above, we assume an adjacency list representation for dynamic depen-
dence graphs together with a time-ordered list of edges, a priority queue that
can support insertions, deletions, and remove-minimum operations in logarith-
mic time, and an order-maintenance structure that supports insert, delete,
compare operations in constant time. We present a more precise account of
the performance of change propagation elsewhere [Acar et al. 2004].

We define several performance measures for change propagation. Consider
running the change-propagation algorithm, and let A denote the set of all af-
fected edges. Of these edges, some of them participate in an edge update (are
re-evaluated), and the others are deleted because they are contained in an

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 6, November 2006.



Adaptive Functional Programming • 1003

Fig. 8. The function-call tree for Quicksort.

updated edge. We refer to the set of updated edges as Au. For an updated edge
e ∈ Au, let |e| denote the re-evaluation time (complexity) of the reader asso-
ciated with e assuming that mod, read, write, take constant time, and let ‖e‖
denote the number of time stamps created during the initial evaluation of e. Let
q be the maximum size of the priority queue at any time during the algorithm.
Theorem 1 bounds the time of a propagate step.

THEOREM 1 (PROPAGATE). Change propagation takes time

O

(∑
e∈Au

(|e| + ‖e‖) + |A| log q

)
.

PROOF. The time for propagate can be partitioned into four items: (1) re-
evaluation of readers, (2) creation of time stamps, (3) deletion of time stamps
and contained edges, and (4) insertions/deletions into/from from the priority
queue.

Re-evaluation of the readers (1) takes
∑

e∈Au
|e| time. The number of time

stamps created during the re-evaluation of a reader is no greater than the time
it takes to re-evaluate the reader. Since creating one time stamp takes constant
time, the time spent for creating all time stamps (2) is O(

∑
e∈Au

|e|). Determining
a time stamp to delete, deleting the time stamp and the corresponding node or
edge from the DDG and the time-ordered doubly linked edge list takes constant
time per edge. Thus total time for the deletions (3) is O(

∑
e∈Au

‖e‖). Since each
edge is added to the priority queue once and deleted from the queue once, the
time for maintaining the priority queue (4) is O(|A| log q).

4.8 Performance of Adaptive Quicksort

We analyze the change-propagation time for Quicksort when the input list is
modified by adding a new key at the end. The analysis is based on the bound
given in Theorem 1.

Figure 8 shows the intuition behind the proof. Each circle represents a recur-
sive call to Quicksort and each rectangle represents a the two calls to filter
along with the recursive calls; the shorter the rectangle, the smaller the input.
The dark circles and squares show the calls that would be affected by some
insertion at the end of the input list. The key here is that each affected call
takes constant time to re-evaluate and no more than two calls to filter are
affected at each level (assuming for counting purposes that all recursive calls
to filter have the same level as the qsort call that calls filter). Only one call to
qsort is affected at the bottom level. Figure 8 highlights the path along which
affected calls occur.
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THEOREM 2. Change propagation updates the output of adaptive Quicksort
in O(log n) time after the input list of length n is extended with a new key at the
end.

PROOF. The proof is by induction on the height h of a call tree representing
just the calls to qs. When the input is extended, the value of the last element ln

of the list is changed from NIL to CONS(v,ln+1), where the value of ln+1 is NIL
and v is the new key. The induction hypothesis is that in change propagation on
an input tree of height h, the number of affected reads is at most 2h (|A| ≤ 2h
and Au = A), each reader takes constant time to re-evaluate (∀e ∈ A, |e| = O(1)),
the time span of a reader contains no other time stamps (∀e ∈ A, ‖e‖ = 0), and
the maximum size of the priority queue is 4 (q ≤ 4).

In the base case, we have h = 1, and the call tree corresponds to an evalua-
tion of qs with an empty input list. The only read of ln is the outer read in qs.
The change propagation algorithm will add the corresponding edge to the prior-
ity queue, and then update it. Now that the list has one element, the reader will
make two calls to filter and two calls to qs’ both with empty input lists. This
takes constant time and does not add any edges to the priority queue. There
are no time stamps in the time span of the re-evaluated edge and the above
bounds hold.

For the inductive case, assume that the hypothesis holds for trees up to
height h − 1, and consider a tree with height h > 1. Now, consider the change
propagation starting with the root call to qs. The list has at least one element
in it, therefore the initial read does not read the tail ln. The only two functions
that use the list are the two calls to filter’, and these will both read the tail
in their last recursive call. Therefore, during change propagation these two
reads (edges) become affected and will be added to the queue. When the edges
are re-evaluated, one will write NIL to its target and will not change it. Re-
evaluating the other reader will replace NIL with CONS(v,ln+1), and therefore
extend the list that becomes input to the next level recursive call. Re-evaluating
both readers takes constant time and the update deletes no time stamps. Re-
execution of the two edges will change the input to one of the two recursive
calls to qs—the change will be an extension at the end. Since the call tree of
the affected qs has depth at most d −1, the induction hypothesis applies. Thus,
|e| = O(1) and ‖e‖ = 0 for all affected edges. Furthermore, the total number
of affected edges is |A| ≤ 2(d − 1) + 2 = 2d and all edges are re-evaluated
(Au = A). To see that q ≤ 4, note that the queue contains edges from at most 2
different qs calls and there are at most 2 edges affected from each call.

It is known that the expected height of the call tree is O(log n) (expectation
is over all inputs). Thus, we have: E [|A|] = O(log n), A = Au, q = 4, and ∀e ∈
A, |e| = O(1), ‖e‖ = 0. Thus, by taking the expectation of the formula given
in Theorem 1 and plugging in these values gives expected O(log n) time for
propagate.

Note that this theorem holds only for changes at the end of the input list.
Changes at the start or the middle are more challenging; we show how to handle
such changes efficiently elsewhere [Acar 2005].
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Fig. 9. The signature of an ordered list.

4.9 The ML Implementation

We present an implementation of our adaptive mechanism in ML. The imple-
mentation is based on a library for ordered lists, which is an instance of the
order-maintenance problem, and a standard priority queue. In the ordered-list
interface (shown in Figure 9), spliceOut deletes all time stamps between two
given time stamps and isSplicedOut returns true if the time stamp has been
deleted and false otherwise.

Figure 10 shows the code for the ML implementation. The implementation
differs somewhat from the algorithm described earlier, but the asymptotic per-
formance remains the same. The edge and node types correspond to edges and
nodes in the DDG. The reader and time-span are represented explicitly in the
edge type, but the source and destination are implicit in the reader. In par-
ticular, the reader starts by reading the source, and ends by writing to the
destination. The node consists of the corresponding modifiable’s value (value),
its out-edges (outEdges), and a write function (wrt) that implements writes or
changes to the modifiable. A time stamp is not needed since edges keep both
start and stop times. The currentTime is used to help generate the sequential
time stamps, which are generated for the edge on line 27 and for the node on
line 22 by the write operation.

Some of the tasks assigned to the change-propagate loop in Figure 5 are
performed by the write operation in the ML code. This includes the functionality
of lines 10–12 in Figure 5, which are executed by lines 17–20 in the ML code.
Another important difference is that the deletion of contained edges is done
lazily. Instead of deleting edges from the priority queue and from the graph
immediately, the time stamp of the edge is marked as affected (by being removed
from the ordered-list data structure), and is deleted when it is next encountered.
This can be seen in line 37.

We note that the implementation given does not include sufficient run-time
checks to verify “correct usage”. For example, the code does not verify that an
initializer writes its intended destination. The code, however, does check for a
read before write.

5. AN ADAPTIVE FUNCTIONAL LANGUAGE

In the first part of the article, we described an adaptivity mechanism in an
algorithmic setting. The purpose was to introduce the basic concepts of adap-
tivity and show that the mechanism can be implemented efficiently. We now
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Fig. 10. The implementation of the adaptive library.

turn to the question of whether the proposed mechanism is sound. To this end,
we present a small, purely functional language, called AFL, with primitives for
adaptive computation. AFL ensures correct usage of the adaptivity mechanism
statically by using a modal type system and employing implicit “destination
passing.”

The adaptivity mechanisms of AFL are similar to those of the adaptive library
presented in Section 4. The chief difference is that the target of a changeable
expression is implicit in AFL. Implicit passing of destinations is critical for
ensuring various safety properties of the language.
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Fig. 11. The abstract syntax of AFL.

AFL does not include analogues of the meta-operations for making and prop-
agating changes as in the ML library. Instead, we give a direct presentation
of the change-propagation algorithm in Section 7, which is defined in terms of
the dynamic semantics of AFL given here. As with the ML implementation, the
dynamic semantics must keep a record of the adaptive aspects of the computa-
tion. Rather than use DDGs, however, the semantics maintains this information
in the form of a trace, which guides the change propagation algorithm. The
trace representation simplifies the proof of correctness of the change propaga-
tion algorithm given in Section 7.

5.1 Abstract Syntax

The abstract syntax of AFL is given in Figure 11. We use the meta-variables x, y ,
and z (and variants) to range over an unspecified set of variables, and the meta-
variable l (and variants) to range over a separate, unspecified set of locations—
the locations are modifiable references. The syntax of AFL is restricted to
“2/3-cps”, or “named form”, to streamline the presentation of the dynamic
semantics.

The types of AFL include the base types int and bool; the stable function
type, τ1

s→ τ2; the changeable function type, τ1
c→ τ2; and the type τ mod of

modifiable references of type τ . Extending AFL with product, sum, recursive, or
polymorphic types presents no fundamental difficulties, but they are omitted
here for the sake of brevity.

Expressions are classified into two categories, the stable and the changeable.
The value of a stable expression is not sensitive to modifications to the inputs,
whereas the value of a changeable expression may, directly or indirectly, be
affected by them. The familiar mechanisms of functional programming are em-
bedded in AFL as stable expressions. These include basic types such as integers
and booleans, and a sequential let construct for ordering evaluation. Ordinary
functions arise in AFL as stable functions. The body of a stable function must
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Fig. 12. Function sum written with the ML library (left), and in AFL (right).

be a stable expression; the application of a stable function is correspondingly
stable. The stable expression modτ ec allocates a new modifiable reference whose
value is determined by the changeable expression ec. Note that the modifiable
itself is stable, even though its contents is subject to change.

Changeable expressions are written in destination-passing style, with an
implicit target. The changeable expression writeτ (v) writes the value v of type
τ into the target. The changeable expression read v as x in ec end binds the
contents of the modifiable v to the variable x, then continues evaluation of
ec. A read is considered changeable because the contents of the modifiable on
which it depends is subject to change. A changeable function itself is stable,
but its body is changeable; correspondingly, the application of a changeable
function is a changeable expression. The sequential let construct allows for the
inclusion of stable subcomputations in changeable mode. Finally, conditionals
with changeable branches are themselves changeable.

As an example, consider a function that sums up the keys in a modifiable
list. Such a function could be written by traversing the list and accumulating a
sum, which is written to the destination at the end. The code for this function
using our ML library (Section 4) is shown in Figure 12 on the left. Note that all
recursive calls to the function sum’ share the same destination. The code for the
sum function in AFL is shown in Figure 12 on the right assuming constructs for
supporting lists and pattern matching. The critical difference between the two
implementations is that in AFL, destinations are passed implicitly by making
sum’ a changeable function—all recursive calls to sum’ share the same destina-
tion, which is created by sum.

The advantage to sharing of destinations is performance. Consider for ex-
ample calling sum on some list and changing the list by an insertion or deletion
at the end. Propagating this change will take constant time and the result will
be updated in constant time. If instead, each recursive call to sum’ created its
own destination and copied the result from the recursive call to its destination,
then this change will propagate up the recursive-call tree and will take lin-
ear time. This is the motivation for including changeable functions in the AFL
language.
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5.2 Static Semantics

The AFL type system is inspired by the type theory of modal logic given by
Pfenning and Davies [2001]. We distinguish two modes, the stable and the
changeable, corresponding to the distinction between terms and expressions,
respectively, in Pfenning and Davies’ work. However, they have no analogue of
our changeable function type, and do not give an operational interpretation of
their type system.

The judgment �; �	se : τ states that e is a well-formed stable expression of
type τ , relative to � and �. The judgment �; �	ce : τ states that e is a well-
formed changeable expression of type τ , relative to � and �. Here, � is a location
typing and � is a variable typing; these are finite functions assigning types to
locations and variables, respectively. (In Section 6, we will impose additional
structure on location typings that will not affect the definition of the static
semantics.)

The typing judgments for stable and changeable expressions are shown
in Figures 13 and 14 respectively. For primitive functions, we assume a typ-
ing relation o. For stable expression, the interesting rules are the mod and the
changeable functions. The bodies of these expressions are changeable expres-
sions and therefore they are typed in the changeable mode. For changeable
expressions, the interesting rule is the let rule. The body of let is a change-
able expression and thus typed in the changeable mode; the expression bound,
however, is a stable expression and thus typed in the stable mode. The mod and
let rules therefore provide inclusion between two modes.

5.3 Dynamic Semantics

The evaluation judgments of AFL have one of two forms. The judgment
σ, e ⇓s v, σ ′, Ts states that evaluation of the stable expression e, relative to the
input store σ , yields the value v, the trace Ts, and the updated store σ ′. The
judgment σ, l←e ⇓c σ ′, Tc states that evaluation of the changeable expression
e, relative to the input store σ , writes its value to the target l , and yields the
trace Tc and the updated store σ ′.

In the dynamic semantics, a store, σ , is a finite function mapping each loca-
tion in its domain, dom(σ ), to either a value v or a “hole” �. The defined domain,
def(σ ), of σ consists of those locations in dom(σ ) not mapped to � by σ . When
a location is created, it is assigned the value � to reserve that location while
its value is being determined. With a store σ , we associate a location typing �

and write σ : �, if the store satisfies the typing �. This is defined formally in
Section 6.

A trace is a finite data structure recording the adaptive aspects
of evaluation. The abstract syntax of traces is given by the following
grammar:

Trace T : : = Ts | Tc

Stable Ts : : = ε | 〈Tc〉l :τ | Ts ; Ts

Changeable Tc : : = Wτ | Rx.e
l (Tc) | Ts ; Tc

When writing traces, we adopt the convention that “;” is right-associative.
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Fig. 13. Typing of stable expressions.

Fig. 14. Typing of changeable expressions.

A stable trace records the sequence of allocations of modifiables that arise
during the evaluation of a stable expression. The trace 〈Tc〉l :τ records the allo-
cation of the modifiable, l , its type, τ , and the trace of the initialization code for
l . The trace Ts ; Ts

′ results from evaluation of a let expression in stable mode,
the first trace resulting from the bound expression, the second from its body.

A changeable trace has one of three forms. A write, Wτ , records the storage
of a value of type τ in the target. A sequence Ts ; Tc records the evaluation of a
let expression in changeable mode, with Ts corresponding to the bound stable
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Fig. 15. Evaluation of stable expressions.

expression, and Tc corresponding to its body. A read Rx.e
l (Tc) trace specifies the

location read, l , the context of use of its value, x.e, and the trace, Tc, of the re-
mainder of evaluation with the scope of that read. This records the dependency
of the target on the value of the location read.

We define the domain dom(T) of a trace T as the set of locations read or
written in the trace T. The defined domain def(T) of a trace T is the set of
locations written in the trace T. Formally, the domain and the defined domain
of traces are defined as

def(ε) = ∅
def(〈Tc〉l :τ ) = def(Tc) ∪ {l }
def(Ts ; Ts

′) = def(Ts) ∪ def(Ts
′)

def(Wτ ) = ∅
def(Rx.e

l (Tc)) = def(Tc)

def(Ts ; Tc) = def(Ts) ∪ def(Tc)

dom(ε) = ∅
dom(〈Tc〉l :τ ) = dom(Tc) ∪ {l }
dom(Ts ; Ts

′) = dom(Ts) ∪ dom(Ts
′)

dom(Wτ ) = ∅
dom(Rx.e

l (Tc)) = dom(Tc) ∪ {l }
dom(Ts ; Tc) = dom(Ts) ∪ dom(Tc).

The dynamic dependency graphs described in Section 4 may be seen as an
efficient representation of traces. Time stamps may be assigned to each read
and write operation in the trace in left-to-right order. These correspond to the
time stamps in the DDG representation. The containment hierarchy is directly
represented by the structure of the trace. Specifically, the trace Tc (and any read
in Tc) is contained within the read trace Rx.e

l (Tc).

5.3.1 Stable Evaluation. The evaluation rules for stable expressions are
given in Figure 15. Most of the rules are standard for a store-passing seman-
tics. For example, the let rule sequences evaluation of its two expressions, and
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Fig. 16. Evaluation of changeable expressions.

performs binding by substitution. Less conventionally, it yields a trace consist-
ing of the sequential composition of the traces of its sub-expressions.

The most interesting rule is the evaluation of modτ e. Given a store σ , a
fresh location l is allocated and initialized to � prior to evaluation of e. The
sub-expression e is evaluated in changeable mode, with l as the target. Pre-
allocating l ensures that the target of e is not accidentally reused during eval-
uation; the static semantics ensures that l cannot be read before its contents is
set to some value v.

Each location allocated during the evaluation a stable expression is recorded
in the trace and is written to: If σ, e ⇓s v, σ ′, Ts, then dom(σ ′) = dom(σ ) ∪ def(Ts),
and def(σ ′) = def(σ ) ∪ def(Ts). Furthermore, all locations read during evaluation
are defined in the store, dom(Ts) ⊆ def(σ ′).

5.3.2 Changeable Evaluation. The evaluation rules for changeable expres-
sions are given in Figure 16. The let rule is similar to the corresponding rule in
stable mode, except that the bound expression, e, is evaluated in stable mode,
whereas the body, e′, is evaluated in changeable mode. The read expression
substitutes the binding of location l in the store σ for the variable x in e, and
continues evaluation in changeable mode. The read is recorded in the trace,
along with the expression that employs the value read. The write rule simply
assigns its argument to the target. Finally, application of a changeable function
passes the target of the caller to the callee, avoiding the need to allocate a fresh
target for the callee and a corresponding read to return its value to the caller.

Each location allocated during the evaluation a changeable expression
is recorded in the trace and is written; the destination is also written: If
σ, l←e ⇓c σ ′, Tc, then dom(σ ′) = dom(σ )∪def(Tc), and def(σ ′) = def(σ )∪def(Tc)∪
{l }. Furthermore, all locations read during evaluation are defined in the store,
dom(Tc) ⊆ def(σ ′).
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6. TYPE SAFETY OF AFL

The static semantics of AFL ensures these five properties of its dynamic se-
mantics: (1) each modifiable is written exactly once; (2) no modifiable is read
before it is written; (3) dependencies are not lost, that is, if a value depends on
a modifiable, then its value is also placed in a modifiable; (4) the store is acyclic
and (5) the data dependences (dynamic dependence graph) is acyclic. These
properties are critical for correctness of the adaptivity mechanisms. The last
two properties show that AFL is consistent with pure functional programming
by ensuring that no cycles arise during evaluation.

The write-once property (1) and no-lost-dependencies property (3) are rela-
tively easy to observe. A write can only take place in the changeable mode and
can write to the current destination. Since being the changeable mode requires
the creation of a new destination by the mod construct, and only the current
destination can be written, each modifiable is written exactly once. For prop-
erty 3, note that dependencies are created by read operations, which take place
in the changeable mode, are recorded in the trace, and end with a write. Thus,
dependences are recorded and the result of a read is always written to a desti-
nation. The proof that the store is acyclic is more involved. We order locations
(modifiables) of the store with respect to the times that they are written and
require that the value of each expression typecheck with respect to the loca-
tions written before that expression. The total order directly implies that the
store is acyclic (property 4), that is, no two locations refer to each other. The
restriction that an expression typechecks with respect to the previously written
locations ensures that no location is read before it is written (property 2). This
fact along with the total ordering on locations implies that there are no cyclic
dependences, that is, the dynamic dependence graph is acyclic (property 5).

The proof of type safety for AFL hinges on a type preservation theorem for
the dynamic semantics. Since the dynamic semantics of AFL is given by an
evaluation relation, rather than a transition system, the proof of type safety is
indirect. First, we prove the type preservation theorem stating that the outcome
of evaluation is type consistent, provided that the inputs are. Second, we prove a
canonical forms lemma characterizing the “shapes” of closed values of each type.
Third, we augment the dynamic semantics with rules stating that evaluation
“goes wrong” in the case that the principal argument of an elimination form is
non-canonical. Finally, we argue that, by the first two results, these rules can
never apply to a well-typed program. Since the last two steps are routine, given
the first two, we concentrate on preservation and canonical forms.

6.1 Location Typings

For the safety proof we will enrich location typings with a total ordering on
locations that respects the order that they are written to. A location typing, �,
consists of three parts:

(1) A finite set, dom(�), of locations, called the domain of the store typing.

(2) A finite function, also written �, assigning types to the locations in dom(�).

(3) A linear ordering ≤� of dom(�).
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The relation l <� l ′ holds if and only if l ≤� l ′ and l �= l ′. The restriction,
≤� � L, of ≤� to a subset L ⊆ dom(�) is the intersection ≤� ∩ (L × L).

As can be expected, stores are extended with respect to the total order: the
ordered extension, �[l ′:τ ′<l ], of a location typing � assigns the type τ ′ to the
location l ′ /∈ dom(�) and places l ′ immediately before l ∈ dom(�) such that

(1) dom(�′) = dom(�) ∪ { l ′ };
(2) �′(l ′′) =

{
τ ′ if l ′′ = l ′

�(l ′′) otherwise;
(3) (a) l ′ ≤�′ l ;

(b) if l ′′ ≤� l , then l ′′ ≤�′ l ′;
(c) if l ′′ ≤� l ′′′, then l ′′ ≤�′ l ′′′.

Location typings are partially ordered with respect to a containment relation
by defining � � �′ if and only if

(1) dom(�) ⊆ dom(�′);
(2) if l ∈ dom(�), then �′(l ) = �(l );

(3) ≤�′ � dom(�) =≤�.

Ordered extensions yield bigger stores: if l ∈ dom(�) and l ′ /∈ dom(�), then
� � �[l ′:τ ′<l ].

Forcing an ordering on the locations of a store suffices to show that the store
is acyclic. It does not however help ensure that locations are not read before
they are written. We therefore restrict an expression to depend only on those
locations that have been written. How can we know what locations are written?
At any point in evaluation, we call the last allocated but not yet written location
the cursor and require that an expression depend only on locations prior to the
cursor. The cursor will be maintained such that all locations that precede the
cursor have been written and those that come after have not. We therefore
define the restriction � � l , of a location typing � to a location l ∈ dom(�) is
defined as the location typing �′ such that

(1) dom(�′) = { l ′ ∈ dom(�) | l ′ <� l };
(2) if l ′ <� l , then �′(l ′) = �(l ′);
(3) ≤�′= ≤� � dom(�′).

Note that if � � �′ and l ∈ dom(�), then � � l � �′ � l .

Definition 3 (Store Typing). A store σ may be assigned a location typing �,
written σ : �, if and only if the following two conditions are satisfied.

(1) dom(σ ) = dom(�).

(2) for each l ∈ def(σ ), � � l	sσ (l ) : �(l ).

The location typing, �, imposes a linear ordering on the locations in the store,
σ , such that the values in σ store have the types assigned to them by �, relative
to the types of its preceding locations in the ordering.
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Fig. 17. Typing of Traces.

6.2 Trace Typing

The formulation of the type safety theorem requires a notion of typing for traces.
The judgment �, l0	sTs � �′ states that the stable trace Ts is well formed rel-
ative to the input location typing � and the cursor l0 ∈ dom(�′). The output
location typing �′ is an extension of � with typings for the locations allocated by
the trace; these will all be ordered prior to the cursor. When �′ is not important,
we simply write �	sTs ok to mean that �	sTs � �′ for some �′.

Similarly, the judgment �, l0	cTc : τ � �′ states that the changeable trace
Tc is well formed relative to � and l0 ∈ dom(�). As with stable traces, �′ is an
extension of � with the newly-allocated locations of the trace. When �′ is not
important, we write �	cTc : τ for �	cTc : τ � �′ for some �′.

The rules for deriving these judgments are given in Figure 17. The input
location typing specifies the active locations, of which only those prior to the
cursor are eligible as subjects of a read; this ensure a location is not read before
it is written. The cursor changes when processing an allocation trace to make
the allocated location active, but unreadable, thereby ensuring that no location
is read before it is allocated. The output location typing determines the ordering
of locations allocated by the trace relative to the ordering of the input locations.
Specifically, the ordering of the newly allocated locations is determined by the
trace, and is such that they are all ordered to occur immediately prior to the
cursor. The ordering so determined is essentially the same as that used in the
implementation described in Section 4.

The following invariants hold for traces and trace typings:

(1) ∀l . l ∈ def(T), l is written exactly once: l appears once in a write position in
T of the form 〈Tc〉l :τ for some Tc.

(2) If �, l0	cTc : τ � �′, then dom(�′) = dom(�)∪def(Tc) and dom(Tc) ⊆ dom(�′).
(3) If �, l0	sTs � �′, then dom(�′) = dom(�) ∪ def(Ts) and dom(Ts) ⊆ dom(�′).

6.3 Type Preservation

For the proof of type safety, we shall make use of a few technical lemmas. First,
typing is preserved by addition of typings of “irrelevant” locations and variables.

LEMMA 4 (WEAKENING). If � � �′ and � ⊆ �′, then

(1) if �; � 	s e : τ , then �′; �′ 	s e : τ ;
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(2) if �; �	ce : τ , then �′; �′ 	c e : τ ;
(3) if � 	s Ts ok, then �′ 	s Ts ok;
(4) if � 	c Tc : τ , then �′ 	c Tc : τ .

Second, typing is preserved by substitution of a value for a free variable of the
same type as the value.

LEMMA 5 (VALUE SUBSTITUTION). Suppose that �; � 	s v : τ .

(1) If �; �, x:τ 	s e′ : τ ′, then �; � 	s [v/x]e′ : τ ′.
(2) If �; �, x:τ 	c e′ : τ ′, then �; � 	c [v/x]e′ : τ ′.

The type preservation theorem for AFL states that the result of evaluation of
a well-typed expression is itself well typed. The location l0, called the cursor, is
the current allocation point. All locations prior to the cursor are written to, and
location following the cursor are allocated but not yet written. All new locations
are allocated prior to l0 in the ordering and the newly allocated location becomes
the cursor. The theorem requires that the input expression be well-typed rela-
tive to those locations preceding the cursor so as to preclude forward references
to locations that have been allocated, but not yet initialized. In exchange, the
result is assured to be sensible relative to those locations prior to the cursor,
all of which are allocated and initialized. This ensures that no location is read
before it has been allocated and initialized.

THEOREM 6 (TYPE PRESERVATION).

(1) If
(a) σ, e ⇓s v, σ ′, Ts,
(b) σ : �,
(c) l0 ∈ dom(�),
(d) l <� l0 implies l ∈ def(σ ),
(e) � � l0	se : τ ,
then there exists �′ � � such that
(f) �′ � l0	sv : τ ,
(g) σ ′ : �′, and
(h) �, l0	sTs � �′.

(2) If
(a) σ, l0←e ⇓c σ ′, Tc,
(b) σ : �,
(c) �(l0) = τ0,
(d) l <� l0 implies l ∈ def(σ ),
(e) � � l0	ce : τ0,

then

(f) l0 ∈ def(σ ′),
and there exists �′ � � such that
(g) σ ′ : �′, and
(h) �, l0	cTc : τ0 � �′.
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PROOF. Simultaneously, by induction on evaluation. We will consider several
illustrative cases.

—Suppose that

(1a) σ, modτ e ⇓s l , σ ′′, 〈Tc〉l :τ ;
(1b) σ : �;
(1c) l0 ∈ dom(�);
(1d) l ′ <� l0 implies l ′ ∈ def(σ );
(1e) � � l0	smodτ e : τ mod.

Since the typing and evaluation rules are syntax-directed, it follows that

(1a(i)) σ [l → �], l←e ⇓c σ ′′, Tc, where l /∈ dom(σ ), and
(1b(i)) � � l0 	c e : τ .

Note that l /∈ dom(�), by (1b). Let σ ′ = σ [l → �] and let �′ = �[l :τ<l0]. Note
that � � �′ and that �′(l ) = τ .
Then, we have

(2a′) σ ′, l←e ⇓c σ ′′, Tc, by (1a(i));
(2b′) σ ′ : �′. Since σ : � by (1b), we have � � l ′	sσ (l ′) : �(l ′) for every l ′ ∈

def(σ ). Now def(σ ′) = def(σ ), so for every l ′ ∈ def(σ ′), σ ′(l ′) = σ (l ′) and
�′(l ′) = �(l ′). Therefore, by Lemma 4, we have �′ � l ′ 	s σ ′(l ′) : �′(l ′),
as required.

(2c′) �′(l ) = τ , by definition;
(2d′) l ′ <�′ l implies l ′ ∈ def(σ ′), since l ′ <�′ l implies l ′ <� l0 and (1d);
(2e′) �′ � l 	c e : τ since �′ � l = � � l0 and (1e(i)).

Therefore, by induction,

(2f′) l ∈ def(σ ′′);
and there exists �′′ � �′ such that

(2g′) σ ′′ : �′′;
(2h′) �′, l	cTc : τ � �′′.
Hence, we have

(1f) �′′ � l0 	s l : τ , since (�′′ � l0)(l ) = �′(l ) = τ ;
(1g) σ ′′ : �′′ by (2g′);
(1h) �, l0 	s 〈Tc〉l :τ : τ � �′′, by (2h′).

—Suppose that
(2a) σ, l0←writeτ (v) ⇓c σ [l0 ← v], Wτ ;
(2b) σ : �;
(2c) �(l0) = τ ;
(2d) l <� l0 implies l ∈ def(σ );
(2e) � � l0 	c writeτ (v) : τ .

By the syntax-directed nature of the typing rules, it follows that

(2e(i)) � � l0 	s v : τ .
Let �′ = � and σ ′ = σ [l0 ← v]. Then, we have:
(2f) l0 ∈ def(σ ′), by definition of σ ′;
(2g) σ ′ : �′, since σ : � by (2b), � � l0 	s v : τ by (2e(i)), and �(l0) = τ by (2c).
(2h) �′, l0 	c Wτ : τ � �′ by definition.
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—Suppose that

(2a) σ, l0←read l as x in e end ⇓c σ ′, Rx.e
l (Tc);

(2b) σ : �;
(2c) �(l0) = τ0;
(2d) l ′ <� l0 implies l ′ ∈ def(σ );
(2e) � � l0 	c read l as x in e end : τ0.

By the syntax-directed nature of the evaluation and typing rules, it follows
that

(2a(i)) σ, l0←[σ (l )/x] e ⇓c σ ′, Tc;
(2e(i)) � � l0	sl : τ mod, hence (� � l0)(l ) = �(l ) = τ , and so l <� l0 and

�(l ) = τ ;
(2e(ii)) � � l0; x:τ 	c e : τ0.

Since l <� l0, it follows that � � l � � � l0.

Therefore,
(2a′) σ, l0←[σ (l )/x] e ⇓c σ ′, Tc by (2a(i));
(2b′) σ : � by (2d);
(2c′) �(l0) = τ0 by (2c);
(2d′) l ′ <� l0 implies l ′ ∈ def(σ ) by (2d).

Furthermore, by (2b′), we have � � l	sσ (l ) : �(l ); hence, � � l0	sσ (l ) : �(l )
and so by Lemma 5 and 2e(ii),

(2e′) � � l0 	c[σ (l )/x]e : τ0.

It follows by induction that

(2f′) l0 ∈ def(σ ′)
and there exists �′ � � such that

(2g′) σ ′ : �′;
(2h′) �, l0 	c Tc : τ � �′.
Therefore, we have

(2f) l0 ∈ def(σ ′) by (6′);
(2g) σ ′ : �′ by (6′);
(2h) �, l0 	c Rx.e

l (Tc) : τ0 � �′, since

(a) � � l0, x:�(l ) 	c e : τ0 by (2e(ii));
(b) �, l0 	c Tc : τ0 � �′ by (2f′);
(c) l ≤� l0 by (2e(i)).

6.4 Type Safety for AFL

Type safety follows from the canonical forms lemma, which characterizes the
shapes of closed values of each type.

LEMMA 7 (CANONICAL FORMS). Suppose that �	sv : τ . Then

—If τ = int, then v is a numeric constant.
—If τ = bool, then v is either true or false.

—If τ = τ1
c→ τ2, then v = func f (x : τ1) : τ2 is e end with �; f :τ1

c→
τ2, x:τ1 	c e : τ2.
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—If τ = τ1
s→ τ2, then v = funs f (x : τ1) : τ2 is e endwith �; f :τ1

s→ τ2, x:τ1	se :
τ2.

—If τ = τ ′ mod, then v = l for some l ∈ dom(�) such that �(l ) = τ ′.

THEOREM 8 (TYPE SAFETY). Well-typed programs do not “go wrong”.

PROOF (SKETCH). Instrument the dynamic semantics with rules that “go
wrong” in the case of a non-canonical principal argument to an elimination
form. Then show that no such rule applies to a well-typed program, by appeal
to type preservation and the canonical forms lemma.

7. CHANGE PROPAGATION

We formalize the change-propagation algorithm and the notion of an input
change and prove the type safety and correctness of the change-propagation
algorithm.

We represent input changes via difference stores. A difference store is a finite
map assigning values to locations. Unlike a store, a difference store may contain
“dangling” locations that are not defined within the difference store. The process
of modifying a store with a difference store is defined as follows.

Definition 9 (Store Modification). Let σ : � be a well-typed store for some
� and let δ be a difference store. The modification of σ by δ, written σ ⊕ δ, is a
well-typed store σ ′ : �′ for some �′ � � and such that

σ ′ = σ ⊕ δ = δ ∪ { (l , σ (l )) | l ∈ dom(σ ) ∧ l �∈ dom(δ) }.
Note that the definition requires the result store be well typed and the types of
modified locations be preserved.

Modifying a store σ with a difference store δ changes the (values of the)
locations in the set dom(σ ) ∩ dom(δ). This set consists of changed locations
and is called the changed-set. Throughout, we use χ and its variants to denote
changed-sets.

Figure 18 gives the semantics of the change-propagation algorithm that was
previously described in an algorithmic setting (Section 4). In the rest of this
section, the term “change-propagation algorithm” refers to the semantics. The
change-propagation algorithm takes a modified store, a trace obtained by eval-
uating an AFL program with respect to the original store, and a changed-set.
The algorithm scans the trace as it seeks for reads of changed locations. When
such a read is found, the body of the read is re-evaluated with the new value
to update the trace and the store. Since re-evaluation can change the target of
the re-evaluated read, the target is added to the changed-set.

The change-propagation algorithm is given by these two judgments:

(1) Stable propagation: σ, Ts, χ ⇓p
s σ ′, Ts

′, χ ′;
(2) Changeable propagation: σ, l←Tc, χ ⇓p

c σ ′, Tc
′, χ ′;

The judgments define the change propagation for a stable trace Ts and a change-
able trace Tc, with respect to a store σ , and a changed-set χ ⊆ dom(σ ). For
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Fig. 18. Change propagation rules (stable and changeable).

changeable propagation a target location, l , is maintained as in the changeable
evaluation mode of AFL.

The rules for change propagation are given in Figure 18. Given a trace,
change propagation mimics the evaluation rule of AFL that originally generated
that trace. To stress this correspondence, each rule is marked with the name of
the evaluation rule to which it corresponds. For example, the propagation rule
for the trace Ts ; Ts

′ mimics the let rule of the stable mode that gives rise to
this trace.

The most interesting rule is the read rule. This rule mimics a read operation,
which evaluates an expression after binding its specified variable to the value
of the location read. The read rule takes different actions depending on whether
the location being read, that is, the source, is in the changed-set or not. If source
is not in the changed-set, then the read need not be re-evaluated and change
propagation continues to scan the rest of the trace. If source is in the changed-
set, then the body of the read is re-evaluated after substituting the new value
of the sources for the bound variable. Re-evaluation yields a revised store and a
new trace. The new trace is obtained by replacing the trace for the re-evaluated
read (Tc) with the trace returned by the re-evaluation (Tc

′). Since re-evaluating
the read may change the value written to the target, the target location is added
to the changed-set.

The purely functional change-propagation algorithm presented here scans
the whole trace. A direct implementation of this algorithm will therefore run in
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time linear in the size of the trace. Note, however, that the change-propagation
algorithm revises the trace by replacing the traces of re-evaluated reads. Thus,
if one is content with updating the trace with side effects, then traces of re-
evaluated reads can be replaced in place, while skipping over the unchanged
parts of the trace. This is the main idea behind the dynamic dependence
graphs (Section 4.4). The ML implementation performs change propagation
using dynamic dependence graphs (Section 4.9).

7.1 Type Safety

The change-propagation algorithm also enjoys a type preservation property
stating that if the initial state is well formed, so is the result state. This ensures
that the results of change propagation can subsequently be used as further in-
puts. For the preservation theorem to apply, the store modification must respect
the typing of the store being modified.

THEOREM 10 (TYPE PRESERVATION). Suppose that def(σ ) = dom(σ ).

(1) If
(a) σ, Ts, χ ⇓p

s σ ′, Ts
′, χ ′,

(b) σ : �,
(c) l0 ∈ dom(�),
(d) �, l0	sTs ok, and
(e) χ ⊆ dom(�),
then for some �′ � �,
(f) σ ′ : �′,
(g) �, l0	sTs

′
� �′,

(h) χ ′ ⊆ dom(�).
(2) If

(a) σ, l0←Tc, χ ⇓p
c σ ′, Tc

′, χ ′,
(b) σ : �,
(c) �(l0) = τ0,
(d) �, l0 	c Tc : τ0, and
(e) χ ⊆ dom(�),
then there exists �′ � � such that
(f) σ ′ : �′,
(g) �, l0 	c Tc

′ : τ0 � �′, and
(h) χ ′ ⊆ dom(�).

PROOF. By induction on the definition of the change propagation relations,
making use of Theorem 6. We consider the case of a re-evaluation of a read.
Suppose that l ∈ χ and

(2a) σ, l0←Rx.e
l (Tc), χ ⇓p

c σ ′, Rx.e
l (Tc

′), χ ∪ {l0};
(2b) σ : �;

(2c) �(l0) = τ0;

(2d) �, l0 	c Rx.e
l (Tc) : τ0;

(2e) χ ⊆ dom(�).
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By the syntax-directed nature of the change propagation and trace typing
rules, it follows that

(2a(i)) σ, l0←[σ (l )/x]e ⇓c σ ′, Tc
′;

(2b(i)) � � l0	sσ (l ) : �(l ), by (2b);

(2d(i)) l <� l0 and �(l ) = τ for some type τ ;

(2d(ii)) � � l0; x:τ	ce : τ0;

(2d(iii)) �, l0	cTc : τ0.

Therefore,

(2a′) σ, l0←[σ (l )/x]e ⇓c σ ′, Tc
′ by (2a(i));

(2b′) σ : � by (2b);

(2c′) �(l0) = τ0 by (2c);

(2d′) l ′ <� l0 implies l ′ ∈ def(σ ) by assumption that def(σ ) = dom(σ );

(2e′) � � l0	c[σ (l )/x]e : τ0 by (2d(ii)), (2b(i)), and Lemma 5.

Hence, by Theorem 6,

(2f′) l ∈ def(σ ′);

and there exists �′ � � such that

(2g′) σ ′ : �′;
(2h′) �, l0	cTc

′ : τ0 � �′.

Consequently,

(2f) σ ′ : �′ by (2g′);
(2g) �, l0	cRx.e

l (Tc
′) : τ0 by (2b(i) and (ii)), (2h), and Lemma 4;

(2h) C ∪ { l0 } ⊆ dom(�′) since l0 ∈ dom(�) and �′ � �.

7.2 Correctness

Change propagation simulates a complete re-evaluation by re-evaluating only
the affected sub-expressions of an AFL program. This sections shows that
change propagation is correct by proving that it yields the same output and
the trace as a complete re-evaluation.

Consider evaluating an adaptive program (a stable expression) e with respect
to an initial store σi; call this the initial evaluation. As shown in Figure 19,
the initial evaluation yields a value vi, an extended store σ ′

i , and a trace T i
s .

Now modify the initial store with a difference store δ as σs = σi ⊕ δ and re-
evaluate the program with this store in a subsequent evaluation. To simulate
the subsequent evaluation via a change propagation apply the modifications δ

to σ ′
i and let σm denote the modified store, that is, σm = σ ′

i ⊕ δ. Now perform
change propagation with respect to σm, the trace of the initial evaluation Ts

i,
and the set of changed locations dom(σ ′

i ) ∩ dom(δ). Change propagation yields
a revised store σ ′

m and trace Ts
m. For the change-propagation to work properly,

δ must change only input locations, that is, dom(σ ′
i ) ∩ dom(δ) ⊆ dom(σi).
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Fig. 19. Change propagation simulates a complete re-evaluation.

To prove correctness, we compare the store and the trace obtained by the
subsequent evaluation, σ ′

s and T s
s , to those obtained by the change propagation,

σ ′
m and Tm

s , (see Figure 19). Since locations (names) are chosen arbitrarily during
evaluation, subsequent evaluation and change propagation can choose different
locations (names). We therefore show that the traces are identical modulo the
choice of locations and the the store σ ′

s is contained in the store σ ′
m modulo the

choice of locations.
To study relations between traces and stores modulo, the choice of locations

we use an equivalence relation for stores and traces that matches different
locations via a partial bijection. A partial bijection is a one-to-one mapping from
a set of locations D to a set of locations R that may not map all the locations in
D.

Definition 11 (Partial Bijection). B is a partial bijection from set D to set
R if it satisfies the following:

(1) B ⊆ { (a, b) | a ∈ D, b ∈ R },
(2) if (a, b) ∈ B and (a, b′) ∈ B, then b = b′,
(3) if (a, b) ∈ B and (a′, b) ∈ B, then a = a′.

The value of a location l under the partial bijection B is denoted by B(l ).
A partial bijection, B, can be applied to an expression e, to a store σ , or to

a trace T, denoted B[e], B[σ ], and B[T], by replacing, whenever defined, each
location l with B(l ):

Definition 12 (Applications of Partial Bijections). Expression: The appli-
cation of a partial bijection B to an expression e yields another expression
obtained by substituting each location l in e with B(l ) (when defined) as
shown in Figure 20.

Hole. The application of a partial bijection to a hole yields a hole, B[�] = �.

Store. The application of a partial bijection B to a store σ yields another store
B[σ ], defined as B[σ ] = { (B[l ], B[σ (l )]) | l ∈ dom(σ ) }.
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Fig. 20. Application of a partial bijection B to values, and stable and changeable expression.

Trace. The application of a partial bijection to a trace is defined as

B[ε] = ε

B[〈Tc〉l :τ ] = 〈B[Tc]〉B[l ]:τ

B[Ts ; Ts] = B[Ts] ; B[Ts]
B[Wτ ] = Wτ

B[Rx.e
l (Tc)] = R B[x].B[e]

B[l ] (B[Tc])

B[Ts ; Tc] = B[Ts] ; B[Tc].

Destination. Application of a partial bijection to an expression with a desti-
nation is defined as B[l←e] = B[l ]←B[e].

The correctness theorem shows that the traces obtained by change propaga-
tion and the subsequent evaluation are identical under some partial bijection
B, that is, B[Tm

s ] = T s
s (referring back to Figure 19). The relationship between

the store σ ′
s of the subsequent evaluation and σ ′

m of change propagation is more
subtle. Since the change propagation is performed on the store that the initial
evaluation yields σ ′

i , and no allocated location is ever deleted, the store after
the change propagation will contain leftover unused (garbage) locations from
the initial evaluation. We will therefore show that B[σ ′

m] contains σ ′
s.

Definition 13 (Store Containment). We say that a store, σ , is contained in
another σ ′, written σ � σ ′, if

(1) dom(σ ) ⊆ dom(σ ′), and

(2) ∀l , l ∈ def(σ ), σ (l ) = σ ′(l ).

We now state and prove the correctness theorem. The correctness theorem
concerns equal programs or stable expressions, that is, expression that are syn-
tactically identical. The theorem hinges on a lemma (Lemma 16) that concerns
expressions that are equal up to a partial bijection (such expressions arise due
to substitution of a variable by two different locations).
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THEOREM 14 (CORRECTNESS). Let e be a well-typed program with respect to
a store typing �, σi : � be an initial store such that def(σi) = dom(σi), δ be a
difference store, σs = σi ⊕ δ, and σm = σ ′

i ⊕ δ as shown in Figure 19. If

(A1) σi, e ⇓s vi, σ ′
i , T

i
s , (initial evaluation)

(A2) σs, e ⇓s vs, σ ′
s, T

s
s , (subsequent evaluation)

(A3) dom(σ ′
i ) ∩ dom(δ) ⊆ dom(σi),

then the following holds:

(1) σm, T i
s , (dom(σ ′

i ) ∩ dom(δ)) ⇓p
s σ ′

m, Tm
s , ,

(2) there is a partial bijection B such that
(a) B[vi] = vs,
(b) B[Tm

s ] = T s
s ,

(c) B[σ ′
m] � σ ′

s.

PROOF. The proof is by an application of Lemma 16. To apply the lemma,
define the partial bijection B (of Lemma 16) to be the identity function with
domain dom(σi). The following hold:

(1) dom(σm) ⊇ dom(σ ′
i ) (follows by the definition of the store modification).

(2) ∀l , l ∈ (def(σ ′
i )−def(σi)), σm(l ) = σ ′

i (l ) (follows by assumption three (A3) and
the definition of the store modification).

(3) B[σm] � σs (since B is the identity, this reduces to σm � σs, which holds
because σs = σi ⊕ δ, and σm = σ ′

i ⊕ δ and σ ′
i � σi).

Applying Lemma 16 with changed locations, dom(σ ′
i ) ∩ dom(δ) = {l | l ∈

dom(σi) ∧ σi[l ] �= σs[l ]} yields a partial bijection B′ such that

(1) B′[vi] = vs,

(2) B′[Tm
s ] = T s

s ,

(3) B′[σ ′
m] � σ ′

s.

Thus, taking B = B′ proves the theorem.

We turn our attention to the main lemma. Lemma 16 considers initial and
subsequent evaluations of expressions that are equivalent under some partial
bijection and shows that the subsequent evaluation is identical to change prop-
agation under an extended partial bijection. The need to consider expressions
that are equivalent under some partial bijection arises because arbitrarily cho-
sen locations (names) can be substituted for the same variable in two different
evaluations. We start by defining the notion of a changed-set, the set of changed
locations of a store, with respect to some modified store and a partial bijection.

Definition 15 (Changed-set). Given two stores σ and σ ′, and a partial bijec-
tion B from dom(σ ) to the dom(σ ′) the changed-set of σ is

χ (B, σ, σ ′) = { l | l ∈ dom(σ ), B[σ (l )] �= σ ′(B[l ]) }.
The main lemma consists of two symmetric parts for stable and changeable

expressions. For each kind of expression, it shows that the trace and the store
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of a subsequent evaluation under some partial bijection is identical to those
that would be obtained by change propagation under some extended partial
bijection. The lemma constructs a partial bijection by mapping locations created
by change propagation to those created by the subsequent evaluation. We will
assume that the expression are well-typed with respect to the stores that they
are evaluated with—indeed, the correctness theorem (Theorem 14) requires
that the expressions and store modifications be well typed.

The proof assumes that a changeable expression evaluates to a different
value when re-evaluated, that is, the value of the target. This assumption
causes no loss of generality, and can be eliminated by additional machinery
for comparing of the old and the new values of the target.

LEMMA 16 (CHANGE PROPAGATION). Consider the stores σi and σs and B be a
partial bijection from dom(σi) to dom(σs). The following hold:

—If

σi, l←e ⇓c σ ′
i , T

i
c ; and

σs, B[l←e] ⇓c σ ′
s, T

s
c ,

then for any store σm satisfying
(1) dom(σm) ⊇ dom(σ ′

i ),
(2) ∀l , l ∈ (def(σ ′

i ) − def(σi)), σm(l ) = σ ′
i (l ), and

(3) B[σm] � σs,
there exists a partial bijection B′ such that

σm, l←T i
c , χ (B, σi, σs) ⇓p

c σ ′
m, Tm

c , χ ; where

(1) B′ ⊇ B
(2) dom(B′) = dom(B) ∪ def(Tm

c ),
(3) B′[σ ′

m] � σ ′
s,

(4) B′[Tm
c ] = T s

c , and
(5) χ = χ (B′, σ ′

i , σ ′
s).

—If

σi, e ⇓s vi, σ ′
i , T

i
s ; and

σs, B[e] ⇓s v′
i, σ ′

s, T
s
s ,

then for any store σm satisfying
(1) dom(σm) ⊇ dom(σ ′

i ),
(2) ∀l , l ∈ (def(σ ′

i ) − def(σi)), σm(l ) = σ ′
i (l ), and

(3) B[σm] � σs,
there exists a partial bijection B′ such that

σm, T i
s , χ (B, σi, σs) ⇓p

s σ ′
m, Tm

s , χ ; where

(1) B′ ⊇ B,
(2) dom(B′) = dom(B) ∪ def(Tm

s ),
(3) B′[vi] = v′

i ,
(4) B′[σ ′

m] � σ ′
s,

(5) B′[Tm
s ] = T s

s , and
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(6) χ = χ (B′, σ ′
i , σ ′

s).

PROOF. The proof is by simultaneous induction on evaluation. Among the
changeable expressions, the most interesting are write, let, and read. Among
the stable expression, the most interesting are the let and mod.

We refer to the following properties of modified store σm as the modified-store
properties:

(1) dom(σm) ⊇ dom(σ ′
i ),

(2) ∀l , l ∈ (def(σ ′
i ) − def(σi)), σm(l ) = σ ′

i (l ), and

(3) B[σm] � σs,

—Write. Suppose

σi, l←writeτ (v) ⇓c σi[l → v], Wτ ; and

σs, B[l←writeτ (v)] ⇓c σs[B[l ] → B[v]], Wτ ,

then for store σm satisfying the modified-store properties, we have

σm, l←Wτ , χ (B, σi, σs) ⇓p
c σm, Wτ , χ (B, σi, σs).

The partial bijection B satisfies the following properties:
(1) B ⊇ B
(2) dom(B) = dom(B) ∪ def(Wτ )
(3) B[σm] � σs[B[l ] → B[v]]: We know that B[σm] � σs and thus we must

show that B[l ] is mapped to B(v) in B[σ ′
m]. Observe that σm(l ) =

(σi[l → v])(l ) = v by Modified-Store Property (2), thus B[σm](B[l ]) =
B[v].

(4) B[Wτ ] = Wτ

(5) χ (B, σi, σs) = χ (B, σi[l → v], σs[B[l ] → B[v]]), by definition.
Thus, pick B′ = B for this case.

—Apply (Changeable). Suppose that

(I.1) σi, l←[v/x, func f (x : τ1) : τ2 is e end/ f ] e ⇓c σ ′
i , T

i
c

(I.2) σi, l←applyc(func f (x : τ1) : τ2 is e end, v) ⇓c σ ′
i , T

i
c

(S.1) σs, B[l ]←[B[v]/x, B[func f (x : τ1) : τ2 is e end]/ f ] e] ⇓c σ ′
s, T

s
c

(S.2) σs, B[l←applyc(func f (x : τ1) : τ2 is e end, v)] ⇓c σ ′
s, T

s
c

Consider evaluations (I.1) and (S.1) and a store σm that satisfies the modified-
store properties. By induction, we have a partial bijection B0 and

σm, l←T i
c , χ (B, σi, σs) ⇓p

c σm, Tm
c , χ ,

where

(1) B0 ⊇ B,
(2) dom(B0) = dom(B) ∪ def(Tm

c ),
(3) B0[Tm

c ] = T s
c , and

(4) B0[σm] � σ ′
s.

(5) χ = χ (B0, σ ′
i , σ ′

s),

Since (I.2) and (S.2) return the trace and store returned by (I.1) and (S.1), we
pick B′ = B0 for this case.
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—Let.
(I.1) σi, e ⇓s vi, σ ′

i , T
i
s

(I.2) σ ′
i , l←[vi/x]e′ ⇓c σ ′′

i , T i
c

(I.3) σi, l←let x be e in e′ end ⇓c σ ′′
i , (T i

s ; T i
c )

(S.1) σs, B[e] ⇓s vs, σ ′
s, T

s
s

(S.2) σ ′
s, B[l ]←[vs/x]B[e′] ⇓c σ ′′

s , T s
c

(S.3) σs, B[l←let x be e in e′ end] ⇓c σ ′′
s , (T s

s ; T s
c )

Consider any store σm that satisfies the modified-store properties. The fol-
lowing judgment shows a change propagation applied with the store σm on
the output trace T i

s ; T i
c .

(P.1) σm, T i
s , χ(B, σi, σs) ⇓p

s σ ′
m, Tm

s , χ

(P.2) σ ′
m, l←T i

c , χ ⇓p
c σ ′′

m, Tm
c , χ ′

(P.3) σm, l←(T i
s ; T i

c ), χ (B, σi, σs) ⇓p
c σ ′′

m, (Tm
s ; Tm

c ), χ ′

We apply the induction hypothesis on (I.1), (S.1), and (P.1) to obtain a partial
bijection B0 such that

(1) B0 ⊇ B,
(2) dom(B0) = dom(B) ∪ def(Tm

s ),
(3) vs = B0[vi],
(4) B0[σ ′

m] � σ ′
s,

(5) B0[Tm
s ] = T s

s , and
(6) χ = χ (B0, σ ′

i , σ ′
s).

Using these properties, we now show that we can apply the induction hy-
pothesis on (I.2) and (S.2) with the partial bijection B0.
— B0[l←[vi/x]e′] = B[l ]←[vs/x]B[e′]:

By Properties (1) and (2) it follows that B[l ] = B0[l ].
By Property (3), B0[vi] = vs.
To show that B[e′] = B0[e′], note that locs(e) ⊆ dom(σi) ⊆ dom(σm) (since e
is well typed with respect to σi). It follows that dom(Tm

s )∩ locs(e) = ∅. Since
dom(B0) = dom(B) ∪ def(Tm

s ), B[e′] = B0[e′].
—χ = χ (B0, σ ′

i , σ ′′
i ). This is true by Property 16.

—σ ′
m satisfies the modified-store properties:

(1) dom(σ ′
m) ⊇ dom(σ ′

i )
This is true because dom(σ ′

m) ⊇ dom(σm) ⊇ dom(σ ′′
i ) ⊇ dom(σ ′

i ).
(2) ∀l , l ∈ (def(σ ′′

i ) − def(σ ′
i )), σ ′

m(l ) = σ ′′
i (l )

To show that ∀l , l ∈ (def(σ ′′
i ) − def(σ ′

i )), σ ′
m(l ) = σ ′′

i (l ), observe that

(a) ∀l , l ∈ (def(σ ′′
i ) − def(σi)), σm(l ) = σ ′′

i (l ),
(b) def(σ ′′

i ) − def(σ ′
i ) = def(T i

c ) ∪ {l },
(c) def(T i

s ) ∩ (def(σ ′′
i ) − def(σ ′

i )) = ∅,

and that the evaluation (P.1) changes values of locations only in def(T i
s ).

(3) B0[σ ′
m] � σ ′

s, this follows by (4).

Now, we can apply the induction hypothesis on (I.2), (S.2) to obtain a partial
bijection B1 such that
(1′) B1 ⊇ B0,
(2′) dom(B1) = dom(B0) ∪ def(Tm

c ),
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(3′) B1[σ ′′
m] � σ ′′

s ,
(4′) B1[Tm

c ] = Tc, and
(5′) χ ′ = χ (B1, σ ′′

i , σ ′′
s ).

Based on these, we have

(1′′) B1 ⊇ B.
This holds because B1 ⊇ B0 ⊇ B.

(2′′) dom(B1) = dom(B) ∪ def(Tm
s ; Tm

c ).
We know that dom(B1) = dom(B0) ∪ def(Tm

c ) and dom(B0) = dom(B) ∪
def(Tm

s ). Thus, we have dom(B1) = dom(B)∪def(Tm
s )∪def(Tm

c ) = dom(B)∪
def(Tm

s ; Tm
c ).

(3′′) B1[σ ′′
m] � σ ′′

s .
This follows by Property 3′.

(4′′) B1[Tm
s ; Tm

c ] = T s
s ; T s

c .
This holds if and only if B1[Tm

s ] = T s
s and B1[Tm

c ] = T s
c .

We know that B0[Tm
s ] = T s

s and since dom(B1) = dom(B0) ∪ def(Tm
c ) and

def(Tm
s ) ∩ def(Tm

c ) = ∅, we have B1[Tm
s ] = T s

s . We also know that B1[Tm
c ] =

T s
c by Property 4′.

(5′′) χ ′ = χ (B1, σ ′′
i , σ ′′

s ),
This follows by Property 5′.

Thus, we pick B′ = B1.

—Read. Assume that we have:

(I.1) σi, l ′←[σi(l )/x]e ⇓c σ ′
i , T

i
c

(I.2) σi, l ′←read l as x in e end ⇓c σ ′
i , Rx.e

l (T i
c )

(S.1) σs, B[l ′]←[σs(B[l ])/x]B[e] ⇓c σ ′
s, T

s
c

(S.2) σs, B[l ′←read l as x in e end] ⇓c σ ′
s, Rx.B[e]

B[l ] (T s
c )

Consider a store σm that satisfies the modified-store properties. Then, we
have two cases for the corresponding change-propagation evaluation. In the
first case, l �∈ χ and we have:

(P.1) σm, l ′←T i
c , χ (B, σi, σs) ⇓p

c σ ′
m, Tm

c , χ

(P.2) σm, l ′←Rx.e
l (T i

c ), χ (B, σi, σs) ⇓p
c σ ′

m, Rx.e
l (Tm

c ), χ
(l �∈ χ )

In this case, we apply the induction hypothesis on (I.1), (S.1), and (P.1) with
the partial bijection B to obtain a partial bijection B0 such that
(1) B0 ⊇ B,
(2) dom(B0) = dom(B) ∪ def(Tm

c ),
(3) B0[σ ′

m] � σ ′
s,

(4) B0[Tm
c ] = T s

c , and
(5) χ = χ (B0, σ ′

i , σ ′
s).

Furthermore, the following hold for B0,

(1) dom(B0) = dom(B) ∪ def(Rx.e
l (Tm

c )).
This follows by Property 2 and because def(Rx.e

l (Tm
c )) = dom(B)∪def(Tm

c ),

(2) B0[Rx.e
l (Tm

c )] = Rx.B[e]
B[l ] (T s

c ).

We have B0[Rx.e
l (Tm

c )] = Rx.B0[e]
B0[l ] (B0[Tm

c ]) = Rx.B0[e]
B0[l ] (T s

c ), because of (c).
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Thus, we need to show that B0[l ] = B[l ] and B0[e] = B[e]. This is true
because,
(a) l �∈ def(Tm

c ) and thus B[l ] = B0[l ], and
(b) ∀l , l ∈ locs(e) we have l ∈ dom(σm) and thus l �∈ def(Tm

c ), which
implies that B[l ] = B0[l ], and B[e] = B0[e].

Thus, we pick B′ = B0.
In the second case, we have l ∈ χ and the read Rx.e

l is re-evaluated.

(P.4) σm, l ′←[σm(l )/x]e ⇓c σ ′
m, Tm

c

(P.5) σm, l ′←Rx.e
l (Tc), χ (B, σi, σs) ⇓p

c σ ′
m, Rx.e

l (Tm
c ), χ (B, σi, σs) ∪ {l ′} (l ∈ χ )

Since B[σm] � σs, the evaluation in (P.4) is identical to the evaluation in (S.1)
and thus, there is a bijection B1 ⊇ B such that B1[Tm

c ] = T s
c and dom(B1) =

dom(B) ∪ def(Tm
c ). Thus, we have

(1) B1 ⊇ B,
(2) dom(B1) = dom(B) ∪ def(Tm

c ),
(3) B1[Tm

c ] = T s
c ,

(4) χ (B, σi, σs) ∪ {l } = χ (B1, σ ′
i , σ ′

s)
To show this, observe that

(a) dom(σ ′
i ) ∩ def(Tm

c ) = ∅, because dom(σm) ⊇ dom(σ ′
i ).

(b) χ(B1, σ ′
i , σ ′

s) = χ (B, σ ′
i , σ ′

s), because dom(B1) = dom(B) ∪ def(Tm
c ).

(c) χ(B, σ ′
i , σ ′

s) = χ (B, σi, σs) ∪ {l ′}, because dom(B) ⊆ dom(σi). (Assum-
ing, without loss of generality, that the value of l ′ changes because of
the re-evaluation).

(5) B1[σ ′
m] � σ ′

s
We know that B1[σm] � σs. Furthermore, B1[σ ′

m − σm] = σ ′
s − σs and thus,

B1[σ ′
m] � σ ′

s.

Thus pick B′ = B1.

—Value. Suppose that

σi, v ⇓s v, σi, ε

σs, B[v] ⇓s B[v], σs, ε.

Let σm be any store that satisfies the modified-store properties. We have

σm, ε, χ (B, σi, σs) ⇓p
s σm, ε, χ (B, σi, σs),

where

(1) B ⊇ B.
(2) dom(B) = dom(B) ∪ def(ε).
(3) B[σm] � σs, by Modified-Store Property (3).
(4) B[ε] = ε.
(5) χ (B, σi, σs) = χ (B, σi, σs).

Thus, pick B′ = B.

—Apply (Stable). This is similar to the apply in the changeable mode.

—Mod. Suppose that

(I.1) σi[li → �], li←e ⇓c σ ′
i , T

i
c

(I.2) σi, modτ e ⇓s li, σ ′
i , 〈T i

c 〉li :τ

li �∈ dom(σi)
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(S.1) σs[ls → �], ls←B[e] ⇓c σ ′
s, T

s
c

(S.2) σs, B[modτ e] ⇓s ls, σ ′
s, 〈T s

c 〉ls:τ

ls �∈ dom(σs).

Let σm be a store that satisfies the modified-store properties. Then, we have

(P.1) σm, li←T i
c , χ (B, σi, σs) ⇓p

c σ ′
m, Tm

c , χ

(P.2) σm, 〈T i
c 〉li :τ , χ (B, σi, σs) ⇓p

s σ ′
m, 〈Tm

c 〉li :τ , χ

Consider the partial bijection B0 = B[li �→ ls]. It satisfies the following:

— B0[li←e] = ls←B[e].
Because B0(li) = ls and li �∈ locs(e).

— B0[σm] � σs[ls �→ �].
We know that B[σm] � σs by Modified-Store Property (3). Since ls �∈

dom(σs), we have B0[σm] � σs.
Furthermore, ls = B0(li) and li ∈ dom(σm) because dom(σm) ⊇ dom(σ ′

i ).
Thus, B0[σm] � σs[ls �→ �]].

—∀l , l ∈ (def(σ ′
i ) − def(σi[li → �])), σm(l ) = σ ′

i (l ).
Because ∀l , l ∈ (def(σ ′

i ) − def(σi)), σm(l ) = σ ′
i (l ) by Modified-Store Prop-

erty (2).
Thus, we can apply the induction hypothesis on (I.1), (S.1) with the partial bi-
jection B0 = B[li �→ ls] to obtain a partial bijection B1 such that the following
hold:

(1) B1 ⊇ B0,
(2) dom(B1) = dom(B0) ∪ def(T i

c ),
(3) B1[σ ′

m] � σ ′
s,

(4) B1[Tm
c ] = T s

c , and
(5) χ = χ (B1, σ ′

s, σ ′
i ).

Furthermore, B1 satisfies

(1) dom(B1) = dom(B) ∪ def(〈T i
c 〉li :τ ).

By Property (2) and because def(T i
c ) = def(〈T i

c 〉li :τ ).

(2) B1[〈Tm
c 〉li :τ ] = 〈T s

c 〉ls:τ .
Because B1[Tm

c ] = T s
c by Property (4) and B1(li) = ls.

Thus, we can pick B′ = B1.

—Let (Stable). This is similar to the let rule in changeable mode.

8. DISCUSSION

8.1 Variants

In the process of developing the mechanisms presented in this article we con-
sidered several variants. One variant is to replace the explicit write operation
with an implicit one. In the ML library, this requires making the target des-
tination an argument to the read operation. In AFL, it requires adding some
implicit type subsumption rules. We decided to include the explicit write since
we believe it is cleaner.
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8.2 Side Effects

We require that the underlying language be purely functional. The main reason
for this is that each edge (read) stores a closure (code and environment) which
might be re-evaluated. It is critical that this closure does not change. The key
requirement, therefore, is not that there are no side-effects, but rather that
all data is persistent (i.e., the closure’s environment cannot be modified). It
is therefore likely that the adaptive mechanism could be made to work in an
imperative setting as long as relevant data structures are persistent. There has
been significant research on persistent data-structures under an imperative
setting [Dietz 1989; Driscoll et al. 1989, 1994].

We further note that certain “benign” side effects are not harmful. For exam-
ple, side effects to objects that are not examined by the adaptive code itself are
harmless. This includes print statements and changes to “meta” data structures
that are somehow recording the progress of the adaptive computation itself. For
example, one way to determine which parts of the code are being re-evaluated
is to sprinkle the code with print statements and see which ones print during
the change propagation. Similarly, re-evaluations of a function can be counted
by defining a global counter and incrementing (side effecting) the counter every
time the function is called. Also, the memoization of the kind done by lazy lan-
guages will not affect the correctness of change-propagation, because the value
remains the same whether it has been calculated or not. We therefore expect
that our approach can be applied to lazy languages, but we have not explored
this direction.

8.3 Applications

The work in this article was motivated by the desire to make it easier to define
kinetic data structures for problems in computational geometry [Basch et al.
1999]. Consider the problem of maintaining some property of a set of objects
in space as they move, such as the nearest neighbors or convex hull of a set
of points. Kinetic data structures are designed to maintain such properties by
re-evaluating parts of the code when certain conditions become violated (e.g.,
a point moves from one side of a line to the other). Currently, however, every
problem requires the design of its own kinetic data structure. We believe that
it is possible, instead, to use adaptive versions of nonkinetic algorithms.

8.4 Full Adaptivity

It is not difficult to modify the AFL semantics to interpret standard functional
code (e.g.the call-by-value lambda-calculus) in a fully adaptive way (i.e., all val-
ues are stored in modifiables, and all expressions are changeable). It is also not
hard to describe a translator for converting functional code into AFL, such that
the result is fully adaptive. The only slightly tricky aspect is translating recur-
sive functions. We, in fact, had originally considered defining a fully adaptive
version of AFL but decided against it since we felt it would be more useful to
selectively choose what code is adaptive.
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8.5 Meta Language

We have not included a “meta” language for AFL that would allow a program
to change input and run change-propagation. There are some subtle issues in
defining such a language such as how to restrict changes to inputs, and how to
identify the “safe” parts of the code in which the program can make changes.
We worked on a system that includes an additional type mode, which we called
meta-stable. Changes and change-propagation could be performed only in this
mode, and there was no way to get into this mode other than from top-level. We
felt, however, that this system did not add much to the main concepts covered
in this article.

9. CONCLUSION

We have presented a mechanism for adaptive computation based on the idea of
a modifiable reference. We expect that this mechanism can be incorporated into
any purely functional call-by-value language. A key aspect of our mechanism is
that it can dynamically create new computations and delete old computations.
The main contributions of the article are the particular set of primitives we
suggest, the change-propagation algorithm, and the semantics along with the
proofs that it is sound. The simplicity of the primitives is achieved by using a
destination passing style. The efficiency of the change-propagation is achieved
by using an optimal order-maintenance algorithm. The soundness of the se-
mantics is aided by a modal type system.
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